
Energy Efficiency and Underwater Radiated Noise Technologies

November 2025

This report reflects the views of the authors and not necessarily the view of ABS.

ABS does not endorse products or manufacturers. Trade or manufacturers' names appear in this report only because they are essential to its objectives.

Acknowledgements

ABS would like to gratefully acknowledge the contributions of the project team whose insights informed this report. Special thanks to Glosten, Noise Control Engineering and Washington Maritime Blue for their analyses and data provision.

INTRODUCTION

Decarbonization, cost pressures and increasingly stringent environmental regulations are driving rapid innovation across the marine sector. Two closely related priorities, improving energy efficiency and reducing underwater radiated noise (URN), are now central to vessel design, operation and retrofit strategies. Energy-efficient technologies reduce fuel consumption and greenhouse gas emissions while also lowering operating costs; at the same time, quieter operations can mitigate adverse effects on marine life and help improve a vessel's social license to operate. This report brings these priorities together to provide a coherent view of technologies, practices and trade-offs that owners, designers and operators can apply to achieve both energy and acoustic performance goals.

This report surveys current and emerging technologies that affect shipboard energy use and underwater noise generation and assesses how they interact. The technologies covered include hull and propulsion optimization, energy management and auxiliary-system efficiency, hybrid and electric powertrains, propeller and wake-control measures, and active/passive noise mitigation technologies. Each category is summarized with the typical performance benefits, implementation considerations and cost estimates.

This is important as a combination of regulatory drivers (national and international emissions and environmental protections), stakeholder expectations (charterers, insurers, financiers and coastal communities) and advances in digital monitoring and propulsion technology means that investment in energy-efficient and low-noise solutions can deliver measurable environmental and commercial returns. Integrating acoustic considerations into early-stage design and into operational energy management helps avoid costly retrofits and reduces the risk of non-compliance or reputational harm. Moreover, better measurement and verification techniques can enable data-driven optimization that can deliver simultaneous reductions in fuel use and radiated noise.

This report is designed for shipowners and operators, naval architects and marine engineers, shipyards, offshore project managers, and environmental compliance teams seeking practical guidance for reducing fuel use and underwater noise through technology selection, design integration and operational practice.

By linking the technical, operational and regulatory aspects, this report aims to help stakeholders make informed, cost-effective decisions that help advance both energy efficiency and marine-environment stewardship.

ABBREVIATIONS

AFC - Alkaline Fuel Cell
ALS - Air Lubrication Systems
ALDR - Air Layer Drag Reduction
APUs - Auxiliary Power Units
BDR - Bubble Drag Reduction
BSP - Bionic Skin Propeller
Capex - Capital Expenditure
CFD - Computational Fluid Dynamics
CPP - Controllable Pitch Propeller
CRL - Commercial Readiness Level
CRP - Contra-Rotating Propellers
dB - Decibels
DEP - Diesel Electric Propulsion
DWT - Deadweight
ECU - Electronic Control Units (ECUs)
EE - Energy Efficiency
EEC - Electronic Engine Control
EETs - Energy Efficiency Technologies
ESS - Energy Storage System
FPP - Fixed-Pitch Propellers
GVU - Gas Valve Unit
GWP - Global Warming Potential
HVAC - Heating, Ventilation and Air-Conditioning (HVAC) Systems
IMO - International Maritime Organization
LCA - Life Cycle Assessment
LNG - Liquefied Natural Gas
LPG - Liquefied Petroleum Gas

MCFC - Molten Carbonate Fuel Cell
MCR - Maximum Continuous Rating
N/A - Not Applicable
OCCS - Onboard Carbon Capture System
Opex - Operational Expenditure
ORC - Organic Rankine Cycle
PAFC - Phosphoric Acid Fuel Cell
PALS - Passive Air Lubrication System
PBCF - Propeller Boss Cap Fin
PCDR - Partial Cavity Drag Reduction
PEM FC - Proton-Exchange Membrane Fuel Cell
PTG - Power Turbine Generator
PTI - Power Take-In
PTO - Power Take-Off
PV - Photovoltaic
RPM - Revolutions Per Minute
SFOC - Specific Fuel Oil Consumption
SOFC - Solid Oxide Fuel Cell
STG - Steam Turbine Generators
TRL - Technology Readiness Level
VFD - Variable Frequency Drive
VIT - Variable Injection Timing
VSG - Variable Speed Generators
VVT - Variable Valve Timing
WASP - Wind-assisted Ship Propulsion
WED - Wake Equalizing Duct
WHR - Waste Heat Recovery

APPENDIX

Technology Readiness Level (TRL) ¹		Commercial Readiness Level (CRL) ²	
Level	Description	Level	Description
1	Basic principles observed and reported.	1	Basic hypothesis that the technology could be commercially viable, but there is no commercial proposition yet.
2	Technology concept and/or application formulated.	2	Basic market awareness demonstrated through research and initial stakeholder discussions. A conceptual proposition has been formulated.
3	Analytical and experimental critical function and/or characteristic proof of concept.	3	Potential application for commercial ships has been identified, and commercial strategy has been formulated.
4	Product and/or process validation in laboratory environment.	4	The commercial strategy is tested and validated in the market. Technology is in the late stages of deployment.
5	Product and/or process validation in relevant environment.	5	The technology has been demonstrated on a commercial scale but is not yet ready for the market.
6	Product and/or process prototype demonstration in a relevant environment.	6	The technology prototype has been built and tested. Market assumptions updated.
7	Product and/or process prototype demonstration in an operational environment.	7	Demonstration as a partial system, with vessel specific approval.
8	Actual product and/or process completed and qualified through test and demonstration.	8	Demonstration as a full system, with vessel specific approval.
9	Actual product and/or process have proven successful.	9	Technology has been introduced in the marine industry, with type approval.

¹ Technology Readiness Levels based on the NASA TRL and NOAA Readiness Levels. [Technology Readiness Levels - NASA, Readiness Levels – Office of Research Transition and Application](#)

² Commercial Readiness Levels based on the scale from the British Institute of Non-Destructive Testing. [CRL](#)

CONTACT INFORMATION

North America Region

1701 City Plaza Dr.
Spring, Texas 77389, USA
Tel: +1-281-877-6000
Email: ABS-Amer@eagle.org

South America Region

Rua Acre, nº 15 - 11º floor, Centro
Rio de Janeiro 20081-000, Brazil
Tel: +55 21 2276-3535
Email: absrio@eagle.org

Europe Region

111 Old Broad Street
London EC2N 1AP, UK
Tel: +44-20-7247-3255
Email: ABS-Eur@eagle.org

Africa and Middle East Region

Al Joud Center, 1st floor, Suite # 111
Sheikh Zayed Road
P.O. Box 24860, Dubai, UAE
Tel: +971 4 330 6000
Email: ABSDubai@eagle.org

Greater China Region

World Trade Tower, 29F, Room 2906
500 Guangdong Road, Huangpu District,
Shanghai, China 200000
Tel: +86 21 23270888
Email: ABSGreaterChina@eagle.org

North Pacific Region

11th Floor, Kyobo Life Insurance Bldg.
7, Chungjang-daero, Jung-Gu
Busan 48939, Republic of Korea
Tel: +82 51 460 4197
Email: ABSNorthPacific@eagle.org

South Pacific Region

7 Science Park Drive
#09-21/32 Geneo, Singapore 119316
Tel: +65 6276 8700
Email: ABS-Pac@eagle.org

© 2025 American Bureau of Shipping. All rights reserved.

