ACTIVITIES

June 2012

In This Issue

Investing in Class of the Future
Page 3

First US-flagged Dual Fuel OSVs
Page 7

New Series of LNG Carriers in China
Page 8
At the annual ABS members meeting held in New York, ABS Chairman Robert D. Somerville said he was pleased to report that every sector of ABS once again had contributed to a record performance in terms of the size of the ABS-classed fleet. “The continued success of ABS is directly attributable to the commitment and effort of the many employees around the world and the trust our clients place in our ability to assist them in meeting the challenges of today and tomorrow,” he said.

By the end of 2011, ABS had grown its classed fleet to more than 185m gt, a 7 percent year-over-year increase from 2010, cementing its position as the second largest classification society in the world. In addition, ABS ended 2011 with over 37m gt of new vessels in its orderbook. This equates to a share of more than 20 percent of new vessel orders worldwide. ABS remains the preferred non-national classification society for orders placed by Japanese shipbuilders and continues to hold the leading position with shipyards in South Korea, China, Taiwan, Singapore, India and Brazil.

According to Somerville, ABS’ continued success is attributable in great part to the desire to stay true to the mission of promoting the security of life, property and the natural environment, which has served as a guiding principle for all of the organization’s activities. By not deviating from the application of class requirements, ABS has developed a high level of integrity recognized across the maritime and offshore industries, which allows the class society to effectively operate at the forefront of technology.

“ABS’ tremendous breadth of knowledge and experience helps our clients evaluate and mitigate the risk to which they are exposed,” Somerville said. “Our ability to provide practical, efficient solutions that will help the marine and offshore industry remains in compliance with statutory and class requirements while adapting to the latest market dynamics places ABS in a class by itself.”

A particular strength of ABS, and a focus for the future, is the ability to bring together the core competency of marine classification with the broader spectrum of safety, risk, integrity, quality and performance management services offered across the entire enterprise. Offering comprehensive solutions to our clients’ most challenging concerns will position ABS well for future success.

“For over 150 years ABS, has been the vanguard of setting standards of excellence,” Somerville said. “Our continued success over the next 150 years will be driven by our ability to continue to use our existing knowledge to create the innovations that will shape not just marine classification, but the entire concept of enterprise risk management.”

ABS Fleet Size (2001-2011)
The 150th annual meeting of ABS presented an opportunity to reflect on the successes of 2011 and to present the organization’s plans for the future, which include projects that will aid the marine and offshore industry to meet changing operational and regulatory requirements.

“As the class society of the future, we will bring innovation to the development of the superior standards and service that will further promote the security of life, property and the natural environment,” said ABS President and CEO Christopher J. Wiernicki. “Our goal at ABS is to change the paradigm of classification by offering innovative, informative services that fit the individuality of our customers.”

Throughout 2011 ABS invested in research and development (R&D) programs across the entire organization. Investment in R&D is crucial, Wiernicki explained, because technology will be the enabler that overcomes the challenges faced by the marine and offshore industries.

In recent years, it has become apparent that having an R&D presence in strategic growth areas is important. This realization led to the establishment of localized ABS technology centers that allow industry professionals and ABS specialists to be co-located with customers. Over the past three years, ABS has invested significantly in R&D capabilities in some of the world’s most dynamic regions. In 2011, ABS expanded its network of research centers in Singapore, Canada and Brazil and established new programs in China and Korea.

Research centers such as these are proving to be a very effective means of strengthening regional partnerships with academia and industry to assist in developing real-world solutions in strategic growth areas, Wiernicki said, noting that sustained investment in R&D will continue to push the boundaries of what is possible.

In addition to intensifying research efforts that will further advances in offshore technology, ABS has invested in developing a suite of classification Rules and Guides that address the greater sophistication of offshore facilities and the coincident increase in regulatory oversight. By providing enhanced standards and associated notations for software integration, drilling systems and subsea technologies, ABS is helping offshore clients develop a more comprehensive approach to asset maintenance and regulatory compliance.

The ABS Environmental Solutions Group is spearheading efforts to assist clients in addressing expanding environmental regulatory requirements that impact the marine and offshore industry. From energy efficiency, to gas-fueled ships, to ballast water management, ABS is working to provide practical guidance that will help owners and operators meet the challenges of the future.

“As always, ABS’ success is directly attributable to our employees and it is our responsibility to provide for their personal safety when in a working environment,” Wiernicki added. In 2011, the organization made significant improvements in its safety performance by reducing lost-time incidents by 50 percent.

“Through its evolution, ABS has set the standards of excellence in marine and offshore classification,” Wiernicki said. “As the Class of the Future, we will change the paradigm of classification by offering innovative, informative services that reflect the individuality of our customers.”

As ABS looks to the future, its goals remain the same – to keep abreast of changes, identify critical industry trends and develop the tools and services clients need to navigate a complex and rapidly changing world. The success of a century and a half was built on this business model, Wiernicki said. “Our achievements and continued success strengthen our confidence in the course we have charted for the future.”
ABS Announces Key Management Changes

Tony Nassif Elected Executive Vice President and COO

In response to continued global expansion of ABS’ operations, Tony Nassif was recently elected Executive Vice President and Chief Operating Officer of the class society. This move, along with other recent management changes, will strengthen ABS’ ability to meet the needs of a growing client base.

ABS President and CEO Christopher J. Wiernicki relinquished the Chief Operating Officer responsibilities to Nassif. Since 2006, Nassif has led the rapid growth of the non-classification activities handled by the ABS Group of Companies, an affiliate of ABS, by developing a strong leadership team and implementing strategies to create a client-centric organization.

“ABS has grown significantly over the last two decades,” said Wiernicki when announcing the appointment. “We are continuously setting records in terms of gross tonnage under class and on top of that, our orderbook remains strong. Due to this activity level, ABS’ workforce continues to grow and this is requiring more management engagement across the board.”

In April 2011, ABS Chairman Robert D. Somerville delegated the CEO responsibilities of ABS to Wiernicki, adding to his responsibilities at that time of President and COO.

“This new management alignment will strengthen our service delivery capabilities while, at the same time, provide the opportunity to continue implementing our strategy to redefine classification services in the future and clearly differentiate ABS within the shipping and offshore industries,” said Somerville.

“The industry, particularly within the context of the regulatory environment, is changing rapidly,” said Wiernicki. “We cannot be in the position of reacting to those changes, we must be thinking ahead, taking a leadership position in managing the change. By bringing Tony Nassif on board to direct our operations, ABS will be better positioned to do that.”

Nassif began his career with ABS in 1982 within the society’s Ship Engineering Division in New York. By the mid-1980s, he was brought into ABSTECH to run and develop the international business activities of its new subsidiary, the ABS Boiler Marine Insurance Company. ABSTECH separated into the affiliated companies that became the ABS Group during the 1990s, with Nassif serving as the Americas Director of ABS Integrated Services. As international work expanded, he worked in a variety of overseas assignments in Latin America, Asia and the Middle East. He returned to Houston to become Executive Vice President of International Operations and, after a number of ABS Group subsidiaries merged into ABS Consulting, Nassif was named its President.

With his recent appointment to ABS, Nassif is looking forward to returning to his roots. “It has been a privilege to be part of the restructuring, resurgence and success of ABS Group, and I have no doubt that this new opportunity will be just as rewarding,” he said.

“The core focus of our activities within ABS Group has been to provide safety, risk and integrity management services to clients in a variety of industries including energy, offshore, government and marine. Since class is increasingly moving to a risk-based approach to establishing and applying standards, the synergies are obvious.”

In 2004, Nassif was named President and COO of the ABS Group of Companies and subsequently was named President and CEO in 2006. In addition to Nassif’s election, ABS recently announced a number of other management appointments. Kirsi Tikka has assumed the role of President and COO of the ABS Europe Division, while John McDonald will take on the role of Chief of Staff for the society. Jim Gaughan is returning to ABS to fill the position of Chief Engineer. Robert Giuffra will serve as Senior Vice President, Service Delivery and Adam Molanen will become Vice President, Quality.

“The current challenges facing the classification sector from a regulatory, technical and service delivery perspective are an opportunity for ABS to rethink class and to lead the development of more targeted, effective, risk-based standards that better promote the safety of life, property and the natural environment,” stated Wiernicki. “These new appointments are in line with that strategy and will allow ABS to be more responsive to the needs of our clients.”
The Board of Directors of the ABS Group of Companies recently elected David Weinstein to the position of President and Chief Executive Officer and as a member of the Board of Directors. Weinstein will be replacing Tony Nassif, who was recently elected Executive Vice President and Chief Operating Officer of ABS.

Weinstein will be moving into his new role from his previous position as Vice President, Strategic Development for ABS. Weinstein joined ABS in October 2010 after more than 25 years as a strategy consultant in the transportation, energy and manufacturing sectors. Weinstein was a partner in several consulting firms including Norbridge, Accenture and Oliver Wyman, serving a global clientele. As a consultant, Weinstein worked closely with ABS, assisting in strategic development.

“ABS Group is a successful, profitable and rapidly growing contributor to the overall success of ABS,” said Robert D. Somerville, Chairman of ABS and ABS Group of Companies. “We are continuously looking for opportunities to strengthen our position as the leading provider of enterprise risk management solutions, particularly those in the marine, offshore and energy sectors. David (Weinstein) brings a comprehensive knowledge of the entire ABS organization and of our principal market sectors that we expect to grow through expansion and targeted acquisitions.”

The ABS Group has continued to record steady, profitable growth despite the recent global economic and financial difficulties. That performance has placed ABS Group in a strong position to benefit from the recovery, of which the first signs have become evident. “We see a very promising future for each of the ABS Group’s operating subsidiaries and David (Weinstein) will provide the strategic leadership needed to benefit from these trends,” said Somerville.

In an associated move, David Walker, currently President of ABS Consulting has been appointed Chief Operating Officer of the ABS Group. The new COO responsibilities will be in addition to those he has as President of ABS Consulting.

“David (Walker) has been a tremendous asset for ABS Consulting during a strong period of performance,” stated Somerville. “David’s assumption of a leadership role across all of ABS Group will bring significant operational experience to compliment the abilities of David (Weinstein). This new leadership team will help position ABS Group for strong growth and continued synergies across the entire ABS enterprise.”

Walker’s has more than 20 years of experience in the risk management, process safety, and asset integrity management fields.

When JBF Associates was acquired by ABS Consulting in 1998, Walker was the Director of Reliability Services. Over the past 14 years, he has held a number of increasingly senior positions within ABS Consulting including Vice President of Business Development; Vice President of Technology; Senior Vice President, Public Sector, and President.
FROM THE CEO:
Continuing Safety Improvements

Safety has been the byword of ABS since the inception of the organization. It is the cornerstone upon which ABS was built. For the safety mindset to be truly lasting and effective it has to become a way of working, a way of thinking and a way of living.

This “safety first” concept is the basis for the company-wide Always Be Safe initiative, which elevates safety awareness from a level of outward compliance to a culture that embraces safety every day. It is the guiding principle behind our operations, whether the work takes place in an office environment, in a shipyard, on a vessel or at any other worksite. Our unique role makes it incumbent upon all ABS employees to demonstrate safety leadership no matter where they are working. The Always Be Safe program tasks each ABS employee with internalizing safe working practices and acting as a safety ambassador in every work environment.

ABS recently instituted a number of initiatives to further sharpen our focus on safety. We arranged for a third-party assessment of our safety culture and made improvements in areas that merited more attention; carried out leadership training for senior and executive management to assist them in driving our safety values throughout the organization; and elevated the role of safety committees across ABS.

One of the most successful initiatives was the creation of a safety improvement team for each division to serve as a communications channel for each operating group – disseminating safety initiatives, collecting feedback and gauging the organization’s success in fostering the desired safety culture.

Opportunities to support client initiatives go hand-in-glove with our safety efforts. For example, in preparation for an impending LNG carrier construction project in China, ABS joined forces with a major operator and the shipyard to present a comprehensive approach to safe operations. This marked the first time a shipyard, a client and a class society all met months before the kickoff of a project to establish the level of safety expected and to lay the groundwork that would enable the yard to meet the objectives.

And the importance of safety as a guiding principle has led to the decision to hold ABS’ first worldwide Safety Day on 25 September 2012. This event will provide another opportunity to engage ABS employees around the world in a full day of heightened safety awareness.

Since launching the Always Be Safe campaign in early 2011, we made tremendous progress in improving our safety performance record with a 50 percent reduction in lost-time incidents (LTIs) from 2010. As we near the half-way mark for 2012, our safety performance record continues to improve, and we are confident that we can achieve the target set for another 50 percent reduction in LTIs by year-end.

Reaching this milestone will require the continued vigilance and dedication of every individual at ABS. I sincerely believe that by working together, the employees of ABS can achieve this objective. Of course, our ultimate goal is for zero LTIs. We realize the path to the ambitious goal of perfection requires absolute dedication and commitment, but we also know what ABS employees can achieve.

I applaud the dedication and perseverance I have seen to date. I congratulate the entire ABS team on its success, and I encourage every employee to redouble safety efforts in the coming months.

For the past 150 years, ABS has been dedicated to improving safety, and we remain proudly committed to that cause.
Harvey Gulf International Marine has selected ABS as the class society for its four new dual fueled LNG-powered offshore supply vessels (OSVs) being constructed at Trinity Offshore, LLC. The vessels will be among the first to be classed under the ABS Guide for Propulsion and Auxiliary Systems for Gas Fueled Ships released in May of 2011.

Shane Guidry, Harvey Gulf International Marine Chairman and CEO comments on the strong relationship between Harvey Gulf and ABS, “We have been working with ABS for a long time; our people know their surveyors and engineers, and in turn ABS is familiar with us and our vessels. Since these will be the first dual fueled LNG-powered vessels under the US flag, the strong relationship ABS has with the US Coast Guard, as well as ABS’ experience with dual fuel propulsion are also of great value to us.”

The LNG-powered OSVs will introduce an innovative environmental solution to the US Gulf of Mexico. “This is likely to be the beginning of a trend for OSVs in the region. The availability of LNG and the implementation of the US Emission Control Area (ECA) starting in August 2012 makes it a natural choice for fuel both from the commercial and environmental point of view,” says Kirsi Tikka, former ABS Chief Engineer and recently named President and COO, ABS Europe Division. “ABS has the technology and experience needed for this project and we are pleased to assist Harvey Gulf in this effort. The application of the Guide for the project will be another example of ABS providing environmental solutions to the industry while maintaining its safety focus,” comments Tikka.

The project will benefit from ABS’ vast experience in the OSV market and its industry-leading knowledge of LNG propulsion. “ABS has experience with a number of existing LNG carriers with dual fuel propulsion. In addition, nearly three-quarters of the LNG carriers on order today will be built with dual fuel capabilities and ABS will be classing almost half of them,” says Tikka. “The application of dual fueled LNG-powered propulsion to OSVs will be an extension of our 60-year experience in the sale and efficient use of LNG.”

The use of LNG as fuel requires new technical solutions associated with the fuel storage, engine and piping arrangements, as well as the bunkering systems. To manage the complexities of the project, ABS has assigned a dedicated project manager and technical team to oversee the vessels’ construction. “This team will work with Harvey Gulf, Trinity Offshore and the vendors to support the development of design in compliance with the ABS Rules and regulations,” explains Tikka.

The supply vessels are also to receive environmentally friendly notations from ABS, including ENVIRO+, denoting that the vessels adhere to enhanced environmental standards, POT for the protection of fuel and lubricating oil tanks and the green passport notation, GP.

The two offshore support vessels will carry the ABS notations A1, AMS, ACCU, OPS-2, GFS (DFD), FFV Class 1, ENVIRO+, NBLES, POT, GP, UWILD.
Chinese-built LNG Carriers: Just the Beginning

The first Chinese-built LNG carrier, constructed in the yard of Hudong-Zhonghua Shipbuilding (Group) Co., a subsidiary of China State Shipbuilding Corporation, was completed in 2008. Since then, the same yard has delivered four additional ships for operation by China LNG, and another one is under construction. China’s progress in this highly specialized vessel sector has come about with the assistance of ABS.

The Hudong yard received an endorsement of its capabilities in this sector in January 2011 when orders for four more LNG carriers were placed by Mitsui OSK Lines (MOL) for a charter with ExxonMobil.

These are unlikely to be the last such orders at Chinese yards. The country has made a strategic decision to add LNG carriers to its shipbuilding repertoire. Additionally, domestic LNG shipbuilding capacity is set to increase as the country promotes the use of natural gas.

Considered a strategic energy cargo by Beijing, LNG imports are being carried on China-built and flagged ships. With China’s increasing gas demand, additional tonnage is expected to be built in China.

The yard’s first six carriers were built to a GTT No. 96 membrane design acquired from Chantiers de l’Atlantique to carry 147,000 m³ of gas with a steam propulsion plant and a single screw. The new orders also use the GTT No. 96 design, have a carrying capacity of 170,000 m³ and employ slow-speed diesel engines to power twin propellers.

ABS Vice President, Global Gas Development William J. Sember says the changed specifications are the result of client and project requirements which represent a natural move in terms of flexibility of cargo and vessel operations.

“The propulsion systems will be larger and that brings new challenges. The change to a direct drive diesel engine brings the need for a reliquification plant on board to handle the boil-off gasses and a gas combustion unit. The changes are a natural evolution, rather than a revolution,” he says.

“There is definite interest in building more ships in Chinese yards and China wants to develop the capacity to build not just for domestic demand but also for Western interests, for operations anywhere in the world,” explains Sember.

That may happen faster than expected since China continues to climb the value chain towards more complex and complicated shipbuilding projects. Though high-value shipbuilding is still in its infancy, the country’s yards have already built jackup rigs, FPSOs, semisubmersibles and drillships for the offshore sector.

“LNG carriers are a natural progression of that development,” adds Sember. “China has built five LNG carriers and is building a sixth and has contracts for four more. After ten ships, I think you can say they are a serious builder, especially as these ships will be built to quality standards comparable to those found at other yards.”

To verify that quality is at the forefront, ABS holds regular seminars to bring together local and international industry experts with operations people with field experience in China to foster cooperation and provide the best possible service to clients.

Essential to this process is the ongoing cooperation between ABS and its local counterpart, China Classification Society (CCS). Since the LNG carriers are built to dual ABS/CCS class, there have been various forums held to bring together key local and international representatives to exchange information and discuss important issues.

With 100 percent of the LNG ships built in China to ABS/CCS class on its books, ABS will continue to play a key role in assisting China’s yards to embrace the LNG revolution.

China’s first self-built LNG carrier, DAPENG SUN, was delivered in April 2008.
A question being asked with increasing frequency by operators of offshore units is, “How can we be confident that the multitude of software programs on our facilities will operate as and when needed?”

Just as prescription medicines can have reactionary effects to one another, so too can integrated software programs. The verification that these complex, computer-controlled systems have been installed and are maintained properly has quickly become another element in operators’ risk management plans.

Growing industry interest in software verification has several leading drillship companies, including Rowan, Seadrill and Pacific moving forward with the ABS specification for Integrated Software Quality Management (ISQM) for their drillships.

ABS offers its Guide for Integrated Software Quality Management (ISQM) and the supporting ISQM notation to aid operators seeking to mitigate software errors that may affect the safety of the unit and its crew. The ISQM notation can also assist with the vital verification process of individual and integrated computer control systems that are important to safe and efficient operations.

Greg Lanier, Deepwater Software Technology and Assurance Manager of Rowan Companies Inc. says the ABS notation provides the shipbuilding industry with a framework to effectively manage and control how complex software development, integration and maintenance are managed throughout the life of specified equipment.

“We feel that application of the ISQM Guide’s recommendations will improve overall quality and aid in reducing the time and cost to commission and implement critical systems,” says Lanier. “Following the Guide’s change management philosophy, we expect to further reduce our total cost of ownership.”

Bret Montaruli, ABS Vice President, Offshore Technology, notes that software defects and errors have become a large percentage of nonproductive time for offshore assets. While the offshore industry has traditionally focused on structures and equipment, software now is such an important component that it needs to be given special consideration.

“The ISQM notation represents the evolution of class in response to industry demands.” Montaruli says. “Structures, equipment and traditional survey regimes and prescriptive Rules are being complemented with software risk management processes. A software error may become a safety issue and result in costly and inefficient utilization of the asset.”

The notation is built on internationally recognized software development standards. The ISQM process verifies the software installed on the unit and then monitors for consistency when there are software updates or a change in hardware throughout the asset’s life.

“The software installed at delivery does not sit in a vacuum,” Montaruli notes. “Upgrades and new releases are routinely made by vendors which may introduce errors into the system and cause operating problems. Operators will benefit from verifying that the software has been developed in a recognized process that meets the operator’s needs and performs as expected.”

Offshore Operators Seek ISQM Notation

ABS ISQM Notation Incorporates Risk Management Process
ABS Establishes New Energy Technology Center in Korea

ABS is strengthening its ties within the Korean maritime industry by establishing the ABS Korea Energy Technology Center (KETC) in Busan. This is ABS’ first energy center and will focus on applied research on a broad range of technology challenges.

The KETC will work in partnership with local universities, shipyards and other organizations to carry out research activities drawing upon the knowledge and experience of ABS engineering and survey staff worldwide. Priority areas for the center include offshore exploration and production technology, subsea applications, LNG technology, ship energy efficiency and renewable energy.

The new technology center is a further extension of the global reach of ABS’ Technology Research and Development group and will play an integral role in ABS’ global energy-related research. The industry has long acknowledged ABS’ leadership in the area of research and development (R&D) for both the shipping and offshore market sectors. The R&D program has always been paramount to the organization’s mission of promoting safety and environmental protection throughout the maritime industry.

ABS Nautical Systems Offers Software Tools to Assist with IMO Mandate for SEEMP

The Ship Energy Efficiency Management Plan (SEEMP) made mandatory by the International Maritime Organization (IMO) is a tool for shipowners and operators to use to develop programs that continuously improve the energy efficiency of their vessels. ABS anticipates that as soon as 1 January 2013, all shipowners and operators will be required to identify and develop ship-specific energy efficiency measures for their vessels.

In an effort to support this mandate, ABS Nautical Systems, a division of ABS and one of the leading providers of asset management software to the marine and offshore industries, offers two solutions that help owners and operators demonstrate compliance with IMO’s mandate for SEEMP.

NS5 Enterprise’s Energy & Environmental software, allows collection, analysis and reporting of a vessel’s performance, efficiency, emissions and discharges. Flexible dashboards provide information necessary for executing better vessel and fleet operations, and the software also generates reports required to demonstrate SEEMP compliance. This new solution which is fully integrated into the NS5 Enterprise suite, also can be used as a standalone tool.

Also available, in partnership with Herbert-ABS Software Solutions, LLC is a fuel performance optimization tool based on trim and draft for enhanced fuel savings. Trim and draft optimization is a way to calculate trim for minimum hull resistance. The applied method for optimization is to conduct model tests in calm water covering relevant speeds and drafts for the operational profile of each vessel class. This tool was developed to identify optimal performance solutions within applicable regulatory boundaries and assists the crew in finding the best trim for any combination of draft and speed.

For more information email: ns-info@eagle.org
COTC Research Project with Dalian University

The growing need for offshore facility research within Greater China led ABS to establish the China Offshore Technology Center (COTC) in May 2011 in partnership with Dalian University of Technology (DUT). The goal of the COTC is to develop key projects that will positively impact the offshore industry in China.

DUT, one of the top programs in marine and offshore engineering in China, will work through the COTC to achieve its goal of becoming the bridge between China’s marine industries and the ABS Technology department.

Projects under joint development include analyzing ice loads on offshore structures and integrating DUT’s hydrodynamic code and ABS’ Offshore Structural Assessment Program (OSAP) to enhance offshore structural designs. Through cooperative projects like these, COTC will strengthen its contacts with the Chinese industry and other research institutes.

George Wang, ABS Manager, COTC and Advanced Analysis explains the main objectives for the COTC and DUT are to share resources for projects. ABS gains access to DUT’s experimental facilities and in return provides internships for DUT students. “We believe that the COTC will further enhance ABS’ presence in China, which is currently experiencing strong growth in both the offshore and shipbuilding industries,” Wang says.

COTC has a strong working relationship with Shanghai Jiao Tong University in addition to its relationship with DUT.

ABS Becomes Saudi Arabia Recognized Organization

The Saudi Arabia Ministry of Transport has granted ABS Recognized Organization (RO) authority privileges. With this recognition, ABS will have the authority to act on behalf of the Saudi Maritime Administration in conducting International Safety Management (ISM) and International Ship and Port Facility Security (ISPS) Code surveys and inspections for companies operating Saudi-flagged vessels.

Finalizing the agreement were M. Samy Karam, ABS Country Manager for Saudi Arabia (center); with Eng Khalil Al Fardan, Director for Maritime Navigation (left); and His Excellency Dr. Abdulaziz A. Alohalym, Deputy Minister for Transport (right).
In January 2012, ABS Group of Companies, an affiliate of ABS, acquired Safetec Nordic AS (Safetec), a leading provider of integrated risk and asset management services based in Trondheim, Norway. The strategic move strengthens the existing safety, risk and integrity management services provided to offshore customers through ABS Consulting, an ABS Group company.

Safetec has been serving customers in the offshore, marine and land-based industries from their key operating centers in Norway, the UK and Malaysia for almost three decades. Adding Safetec’s integrated risk and asset life cycle management services to the organization significantly enhances ABS Consulting’s existing risk and integrity management services.

According to Safetec CEO Jan Morten Ertsaas, “ABS Consulting and Safetec have complementary skills and expertise that will provide an even broader range of solutions to all of our customers. The combination of Safetec and ABS Consulting will allow Safetec and our employees even greater opportunities to grow with exciting chances to leverage the global ABS Consulting presence and develop new and innovative solutions for our customers.”

ABS Chairman Robert D. Somerville says the acquisition represents an important step in equipping ABS Consulting to meet the increasingly complex challenges in the offshore sectors. “This is an agreement which will enable ABS Consulting to enhance the delivery of services and programs that meet our client’s challenges today and tomorrow.”

In February 2012, ABS Group announced its acquisition of maintenance and asset management solutions provider Genesis Solutions, headquartered in Ridgefield, Connecticut. In little more than a decade, Genesis Solutions has grown to become a leading provider of integrated Enterprise Asset Management (EAM) services to major pharmaceutical, energy, food and beverage, manufacturing and facilities maintenance customers. With operations in the US, Canada, Latin America, Europe and Asia, Genesis Solutions will be combined with ABS Consulting’s existing Reliability and Maintenance Management group to form a new EAM competency center.

“The Genesis Solutions acquisition represents an important step in assisting our clients to maximize the return on their capital investments and increase operating efficiency,” says Somerville. “We are pleased that this acquisition provides ABS Consulting the capabilities to enhance the delivery of services and programs to our clients.”

The signing ceremony for the Safetec Nordic AS acquisition, standing (from left): Tony Nassif, former ABS Group President and CEO and recently named ABS Executive Vice President and COO; Robert D. Somerville, ABS Chairman; and Jan Morten Ertsaas, Safetec CEO. Seated: Professor Jan Erik Vinnem; Jon Daniel Nesje, Safetec Board Chairman; and David Walker, ABS Consulting President and recently named ABS Group COO.
ABS Offers Enhanced Polar Class Criteria

As the industry awaits the finalization of the IMO’s new Polar Code, operators of vessels working in polar regions have a new level of defined standards available through ABS’ expanded ice-strengthening requirements.

“The IACS Unified Requirements (UR) for Polar Ships are often considered the best available reference for the design of next generation, ice-capable ships operating in polar waters,” says Han Yu, ABS Manager of Shared Technology. “But these standards provide only the minimum requirements for ice strengthening. ABS is incorporating knowledge gained from the in-service application of its Polar and Ice Class requirements and its participation in joint research initiatives to develop a more comprehensive ice class system.”

According to Yu, the new Enhanced Polar Class notation offered by ABS is the first step toward reaching this system. “This notation provides guidance to supplement the IACS Unified Requirements for Polar Ships where they are either silent or do not explicitly provide criteria,” explains Yu.

Also included in the Rules are the Finnish Swedish Ice Class Rules as well as the requirements for vessels which will navigate in first-year ice. Assembled in Part 6 of the ABS 2012 Steel Vessels Rules (SVR), the new strengthening for ice navigation requirements offer a wide range of options for the operators who may wish to operate ice-capable vessels in polar waters, sub-polar regions covered with first-year ice or in the Baltic Sea. “This approach aligns the ABS notations with the anticipated IMO Polar Code, preserves the experience reflected in the ABS requirements and presents the industry with standards based on modern technology,” says Yu.

The figure shown below represents the organization of the new ABS Strengthening for Navigation in Ice Requirements.

SVR Ice Class Rules (2012)

<table>
<thead>
<tr>
<th>SVR 6-1-1</th>
<th>IACS UR I1 - General</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVR 6-1-2</td>
<td>IACS UR I2 - Structure</td>
</tr>
<tr>
<td>SVR 6-1-3</td>
<td>IACS UR I3 - Machinery</td>
</tr>
<tr>
<td>SVR 6-1-4</td>
<td>Polar Class - Enhanced</td>
</tr>
<tr>
<td>SVR 6-1-5</td>
<td>A0-D0, First-year Ice Class, Barges</td>
</tr>
<tr>
<td>SVR 6-1-6</td>
<td>Baltic Ice Class Rules</td>
</tr>
</tbody>
</table>

“Polar Class” for polar waters minimum requirements by IACS UR

Covers subjects not addressed in UR

Retained from existing SVR

Updated based on Baltic Administration

Joint Research Focuses on Winterization

Operating in polar regions brings challenges beyond structural and machinery requirements typically addressed in the Ice Class Rules. Natural conditions of this region, such as low visibility, extreme cold weather and ice impose more difficulties for navigational, developmental and operational activities. Therefore, it is necessary to adapt the conventional design and operation procedures for safe operations in harsh environments. Such adaptation is defined as winterization. Winterization is usually related to issues that include de-icing, ice effects mitigation, heat tracing, protection of operating condition, piping arrangement and the prevention of ice accretion.

The ABS Harsh Environment Technology Center (HETC) at Memorial University at Newfoundland is researching winterization with the aim of developing risk-based guidelines for winterization of offshore operations under Arctic conditions. The outcome of the proposed project will provide guidance on the selection and extent of winterization to operators with limited operational experience in harsh environments.
ABS Provides Funding for Harsh Ocean Environment Research

ABS and the Research and Development Corporation of Newfoundland and Labrador (RDC) have each contributed $300,000 to the ABS Harsh Environment Technology Center (ABS-HETC) at Memorial University of Newfoundland (MUN). This investment, totaling $600,000, will enable the faculty of engineering and applied science to research how ship and offshore structures can be improved to work more effectively in volatile ocean conditions.

“ABS and Memorial University have developed a strong working relationship during the last few years while producing important research in this field,” says Todd Grove, ABS Chief Technology Officer. “With this additional support, we not only build upon our previous efforts but continue to assist the marine and offshore industry in tackling the challenges they face in harsh, Arctic environments.”

Established in 2009, the ABS-HETC was created to support the development of technologies for ships and offshore structures operating in harsh environments. The investment not only provides funding for the program but strengthens the relationship between ABS and MUN.

Today, the ABS-HETC research program focuses on dynamic positioning in ice, produced water management, ballast water treatment management, corrosion protection of ships and platforms, and fire and explosion assessment.

“Memorial’s faculty of engineering has the unique resources and expertise needed to address the challenges of ship and structure design for harsh offshore environments,” says Dr. Gary Kachanoski, MUN President and Vice Chancellor. “Ultimately, the research stemming from this investment will help our students, faculty and industry partners make ocean-related industries safer and more productive.”

ADDRESS CHANGES

PLEASE NOTE THE FOLLOWING CHANGES TO CONTACT DETAILS FOR ABS OFFICES

AZERBAIJAN
BAKU
ABS Europe Division
25 S. Vurgun str. "Baku Residence"
Floor 2 Apt. 59
Baku, AZ1000 Azerbaijan
Tel: 99-412-493-36-01
Fax: 99-412-493-35-97
Email: ABSBaku@eagle.org

CHINA
NANTONG
ABS Greater China Division
Room 2102-2103, Nantong International Trade Center
No. 88, Chongchuan Road, Chongchuan District
Nantong City, 226004, China
Telephone and fax numbers remain unchanged

SHANGHAI
ABS Greater China Division
5th Floor, Silver Tower
No. 85 Taoyuan Road
Huang Pu District
Shanghai, 200021, China
Telephone and fax numbers remain unchanged

USA
BATH, MAINE
ABS Americas Division
Government Operations
8 Leavitt Drive, Building 54
Brunswick, Maine 04011
Tel: 1-207-373-3491

MARINETTE, WISCONSIN
Tel: 1-715-732-0309
Investigations of major disasters often produce a common finding: that the safety culture of an organization can significantly impact the outcome of safety performance. The basis of this finding lies in the reality that most operational incidents are not solely the result of human error, technical failures or environmental factors, but rather can be attributed to more systemic organizational or managerial flaws. Examples include a failure of management and communication, employees not performing their duties and a breakdown in documented systems.

ABS released Guidance Notes on Safety Culture and Leading Indicators of Safety to offer the industry a new method for improving safety performance through the identification of potential leading indicators and a process to improve organizational safety culture, both onshore and at sea.

Kevin McSweeney, ABS Manager of Safety and Human Factors notes that “In most industries, today’s safety professionals agree that through the identification, tracking and acting upon leading indicators – which are safety metrics associated with safety performance – organizations may maintain and improve future safety performance.”

He explains that historically safety performance has been measured by ‘after the loss’ type of measurements such as accident and injury rates, incidents and dollar costs. “We call these ‘lagging indicators’ as they characteristically identify trends in past performance, assess outcomes and occurrences, have a long history of use and are easy to calculate.”

Over the years, improved safety performance has been associated with a number of measurable activities in various industries, opening up the possibility that some of these metrics may be leading indicators for safety performance. Examples of metrics for these activities include the size of the safety budget, safety audit scores, the number of safety inspections and the number of safety meetings involving management.

Christine Tomlinson, ABS Senior Principal, Safety and Human Factors group comments that “Leading indicators are safety culture metrics that are associated with, and precede, an undesirable/unexpected consequence such as an operational incident, near miss or personal injury.” Tomlinson also says that “They can reveal areas of weakness in advance of adverse events, be associated with proactive activities that identify hazards and aid in risk assessment and management. To many, leading indicators are considered the most important safety culture metrics for the organization as they correlate with the organization’s safety performance.”

Recognizing the value of incorporating a strong safety culture in the maritime industry, ABS developed the Guidance Notes to assist operators striving to improve safety performance in the management and operation of their cargo-carrying commercial vessels.

The central premise of the ABS Safety Culture and Leading Indicators Model presented in the Guidance Notes is that improvements in organizational safety culture can lead to enhanced safety performance. “The first step is an assessment of the existing safety culture to identify areas of strength, weaknesses of defenses and opportunities for improvement against operational incidents or personal injuries,” says Tomlinson.
ABS published an updated Guide discussing marine health, safety, quality, environmental and energy (HSQEEn) management to provide owners and operators with new tools to enhance marine management practices and achieve energy efficient ship operations.

The previously published Guide for Marine Health, Safety, Quality and Environmental Management was broadened in scope to incorporate Energy Management Systems (EnMS) requirements, with the inclusion of the new ISO 50001 Energy Management Standard, reflecting the increasing need for ship operators to maximize onboard energy efficiency.

ABS Director of Management Systems Certification Capt. Hemant Juneja, says owners and operators can use the Guide as the foundation for a complete EnMS program including implementation of the IMO’s Ship Energy Efficiency Management Plan (SEEMP).

“This Guide provides a management plan which companies can use, as a basis for implementing the new energy efficiency regulations on their vessels. The cost of fuel is a major issue for shipowners and operators and is likely to continue rising, so even fuel savings of a small percentage can make a big impact on their bottom line.”

The Guide is applicable for companies operating all types of ships with requirements that apply to a wide variety of vessel operations and management styles. These have been largely derived from the sound management system principles reflected in the ISM Code and other internationally recognized quality, environmental and occupational health and safety standards, with content that reflects the specifics of marine operations.

Capt. Juneja says the inclusion of EnMS in the Guide enables organizations to establish the systems and processes necessary to measure, monitor and improve energy performance.

“Improved energy performance helps an organization better manage its energy sources and energy-related assets,” he says. “Implementation of EnMS requirements can deliver systematic management of energy use and drive reductions in energy consumption and therefore CO2 and greenhouse gas emissions.”

Improving operational efficiency through performance management also has a broader impact, he says, reducing not just operating costs and the risk of accidents but potentially insurance premiums too.

“Ship operators have to meet increasingly tough performance criteria from their customers so every efficiency attained is important. This Guide will help provide evidence of compliance with industry standards such as Tanker Management Self-Assessment, ISO and OHSAS requirements,” he says.

ABS designed the new Guide to be practical to adopt and implement, thanks to a single integrated audit process, with one auditor able to provide multiple certifications from a single audit, saving time and money for the client.

“This is a voluntary standard but because we are integrating energy management into the Guide, rather than provide it as a standalone module, the net increase in paperwork is minimal,” he adds.
Recently Released ABS Rules & Guides

ABS Rules and Guides are available for purchase and/or free download directly from the website at www.eagle.org. Sign up to receive email notifications when new publications or notices are available. The following listing reflects Rules and guides updates from 1 September 2011 to 30 April 2012.

RECENT PUBLICATIONS

UPDATE
Last published in 2009, the 2012 edition of the Guide specifies the new Energy Management Systems (EnMS) Requirements (ISO 50001:2011). Proper implementation of these requirements should assist the company to achieve continual improvement in energy consumption, performance and efficiency, leading to reductions in energy cost and greenhouse gas emissions and other environmental impacts through systematic management of energy. In the Guide, the EnMS requirements are identified by an “En” notation. This publication is available for download. Printed versions of the Guide will also be available.

UPDATE
Guide for Building and Classing High Speed Craft, February 2012 (Pub 61)
Last published in 2001, the 2012 edition of the Guide specifies requirements for hull construction (based on steel, aluminum alloys and fiber-reinforced plastics), machinery equipment and systems, testing and survey. The Guide is applicable to high-speed craft intended for commercial or governmental service. The requirements apply to monohulls up to 130 meters in length, multi-hulls up to 100 meters, surface effect ships up to 90 meters and hydrofoils up to 60 meters. This publication is only available for download.

UPDATE
Guide for Mobile Offshore Units Operating on Norwegian Continental Shelf, N-Notation, February 2012 (Pub 155)
As the Acknowledgement of Compliance (AoC) is mandatory for mobile offshore units operating on the Norwegian Continental Shelf (NCS), this Guide provides the technical requirements related to classification for compliance. Originally published in 2007, this updated Guide contains criteria for obtaining an ABS N-notation. With the 2012 edition, the Guide includes a new appendix with specifications for existing vessels. This publication is only available for download.

UPDATE
Rules for Crew Habitability on Workboats, February 2012 (Pub 163)
The Guide provides assessment criteria and applicable measurement methodology for obtaining optional ABS Habitability notations [(HAB)(WB)], (HAB+(WB)) or (HAB++(WB)) for workboats. Previously released in 2008, this updated Guide has been significantly revised to incorporate whole-body vibration measurement and evaluation, changes to ambient lighting criteria, and changes to the noise and accommodation area requirements. This publication is only available for download.

UPDATE
Rules for Building and Classing Steel Vessels, January 2012 (Pub 2)
Effective 1 January 2012, this is the newest edition of the Rules for Building and Classing Steel Vessels. These Rules apply to steel vessels of 90 meters (295 feet) and over in length. The requirements are applicable to those features that are permanent in nature and can be verified by plan review, calculation, physical survey or other appropriate means. The primary changes from the 2011 edition of the Rules are identified in Table 3 of the Notices and General Information book.

UPDATE
Rules for Building and Classing Steel Vessels Under 90 Meters (295 Feet) in Length, January 2012 (Pub 5)
With an effective date of 1 January 2012, these Rules apply to self-propelled steel vessels under 90 meters (295 feet) in length intended for unrestricted ocean service with the exception for those in offshore service. The Rules cover hull construction, machinery equipment and systems, testing and survey. The primary changes from the 2011 edition of the Rules are identified and listed in Table 3 of the Notices and General Information book.

UPDATE
Rules for Building and Classing Mobile Offshore Drilling Units, January 2012 (Pub 6)
Effective 1 January 2012, these Rules contain standards for the design, construction, and periodic surveys after construction for self-elevating, column-stabilized and surface-type mobile offshore drilling units (MODUs). This edition of the Rules has been reorganized, and a new Part 6 for equipment and machinery certification has been added. The survey requirements in the former Part 6 are now in Part 7, along with requirements for surveys during construction and for testing and trials.
UPDATE
Rules for Building and Classing Underwater Vehicles, Systems and Hyperbaric Facilities, January 2012 (Pub 7)
With an effective date of 1 January 2012, this edition of the Rules has been reorganized to move the requirements for remotely operated vehicles, handling systems and dive control stations from Appendices to the applicable Rules sections. Requirements for lock-out submersibles have also been added.

NEW
Guidance Notes on Safety Culture and Leading Indicators of Safety, January 2012 (Pub 188)
The Guidance Notes provide questionnaires, datasheets, analysis techniques and examples to assist a marine organization with the assessment of its safety culture and the development of a leading indicators program. In safety-critical systems, the use of leading indicators has been proposed to identify areas of weakness in advance of adverse events, affording the possibility of taking action to avoid losses. This publication is only available for download.

NEW
Guide for the High Voltage Shore Connection, November 2011 (Pub 182)
The objective of this Guide is to provide requirements for the design, installation and survey of high voltage shore connection installations. The requirements in this Guide have been developed in consideration of the joint effort by IEC, ISO and IEEE to establish an international standard for Cold Ironing – High Voltage Connection Systems which at the time of the issuance of this Guide is under development. This publication is only available for download.

NEW
Guide for Ballast Water Treatment, November 2011 (Pub 187)
This Guide specifies the requirements for obtaining the optional classification notations Ballast Water Treatment (BWT) and Ballast Water Treatment Plus (BWT+). The BWT notation identifies that the IMO Member State Type Approved ballast water management system has been reviewed and installed in compliance with this Guide. The BWT+ notation is available for those vessels that have been fabricated under survey at the manufacturing facility by an ABS surveyor. This publication is only available for download.

NEW
Guide for the Approval of Friction Stir Welding in Aluminum, October 2011 (Pub 186)
This Guide provides the guidelines for the approval of friction stir welding procedures, operators and the nondestructive testing requirements for production friction stir welding of aluminum. These guidelines are based on the current knowledge and may be updated as practical experience is gained. The latest knowledge will be considered in approval tests and may require the test program or the range of approval to be adapted accordingly. This publication is only available for download.

Recent Updates to ABS Rules & Guides

<table>
<thead>
<tr>
<th>GENERIC RULES NOTICES & CORRIGENDA</th>
</tr>
</thead>
</table>
| **Part 1**
Rules for Conditions of Classification (2011)
• Rule Change Notice 4, November 2011 |
| **Part 1**
Rules for Conditions of Classifications (2012)
• Rule Change Notice 1, November 2011
• Rule Change Notice 2, February 2012 |
| **Part 1**
Rules for Conditions of Classification – Offshore Units and Structures (2008)
• Rule Change Notice 9, November 2011 |
| **Part 1**
Rules for Conditions of Classification – Offshore Units and Structures (2012)
• Rule Change Notice 1, November 2011 |
| **Part 2**
Rules for Materials and Welding (2012)
• Corrigenda, January 2012 |
| **Part 2**
Rules for Materials and Welding (2006) – Aluminum and Fiber Reinforced Plastics (FRP) (Chapters 5-6)
• Corrigenda, January 2012
• Rule Change Notice 6, January 2012 |
| **Part 7**
Rules for Survey After Construction (2012)
• Corrigenda, January 2012 |
Recent Updates to ABS Rules & Guides

Notices & Corrigenda

<table>
<thead>
<tr>
<th>Pub</th>
<th>Title</th>
<th>Corrigenda/May</th>
<th>Rule Change Notice</th>
</tr>
</thead>
</table>
ABS has released its new Guide for Ballast Water Treatment which will aid vessel owners and operators in preparing for compliance with the IMO’s International Convention for the Control and Management of Ships’ Ballast Water and Sediments, 2004.

The Convention is designed to provide a unified instrument to prevent, minimize and ultimately eliminate the transfer of harmful aquatic organisms via ships’ ballast water and sediments. As of 30 April 2012, 33 member States representing 26.5 percent of the world’s merchant shipping tonnage had ratified the Convention against a required 30 States representing 35 percent of the world gross tonnage.

Owners mindful that the Convention may enter into force during the first half of 2013 are examining options for newbuilds and retrofits that will give them flexibility in terms of costs and operation.

The Guide includes the installation parameters required for an ABS-classed vessel utilizing an IMO member State type approved ballast water treatment system and offers owners two optional notations to demonstrate further due diligence in their ballast water management practices.

The tiered notations BWT and BWT+ will bring the ballast water treatment system under survey wherein the class society will review the system for compliance with the Guide, confirm the installation design, conduct a survey during installation, periodically evaluate the onboard ballast water management system and perform shipboard function tests. The BWT+ notation signifies that the installed treatment system has been surveyed by an ABS surveyor at the manufacturing facility.

The ABS Guide for Ballast Water Treatment (Publication #187) is available for free download from the ABS website. Navigate to Resources, Rules & Guides, Downloads.

Displayed, one of the approved ballast water treatment systems, BalClor™ System, received final approval for active substances.
Drilling System Requirements Training a Big Success in Norway

The offshore industry was given a comprehensive insight into the upcoming technical changes to drilling system component requirements at a gathering in Kristiansand, Norway. Held jointly with the Norwegian Offshore and Drilling Engineering (NODE) organization, ABS and Halliburton instructors overviewed the drilling process, the equipment used and the new classification requirements from ABS for that equipment.

Geir Eiesland, Technical Manager at Aker Solutions commented, “This course has been a great help to our understanding of the developing regulatory requirements that will be applied to drilling systems.” Over 100 participants from the leading manufacturers of drilling systems attended to enhance their awareness of compliance requirements contained in the ABS Guide for the Classification of Drilling Systems (CDS).

The course provided operators and equipment manufacturers the opportunity to meet directly with the ABS personnel involved in the Guide’s development. Harish Patel, ABS Manager, Offshore Technology and lead instructor for this course, comments that the courses are mutually beneficial. “Courses like these are a great opportunity for us to obtain further input from companies at the leading edge of drilling technology that we can incorporate into our development process.”

The Guide is a key offshore industry reference for companies with interest in supplying equipment to vessel owners and operators drilling in the US market. Drilling systems and equipment designed and manufactured in accordance with the main body of this Guide will comply with the applicable requirements of the American Petroleum Institute. Those also complying with the applicable US Code of Federal Regulations will meet US Coast Guard requirements.

ABS Academy has over 160 marine and offshore training courses available from its seven training facilities located in key marine and offshore centers worldwide.
New Implications for Gas Fueled Ships

In late 2011, ABS hosted a seminar highlighting the current technical and regulatory developments concerning gas fueled ships. Jim Gaughan, recently named ABS Chief Engineer, provided an overview of the regulatory framework, discussed key drivers for liquefied natural gas (LNG) powered ships and presented issues to consider for the future. A discussion of the ABS *Guide for Propulsion and Auxiliary Systems for Gas Fueled Ships* was also part of the agenda.

Many factors are contributing to the popularity of LNG propulsion as an option for both new construction and engine modification projects. These include: the emerging use of LNG as a fuel; stricter international, national, state and port air emission regulations; the development of shale gas in North America; and the potential for lower fuel costs.

The seminar was attended by owners, operators, designers and builders interested in learning about recent developments for gas fueled ships. Frank Katulak, President and COO of GDF Suez, North America, outlined the infrastructure for LNG including world pricing and issues associated with LNG handling.

Sun Enterprises: Certificate of Appreciation

Sun Enterprises was recently awarded the ABS Certificate of Appreciation for its continual endeavor and commitment to providing systematic corporate training of its shipboard and shore-based personnel.

From left: Vassilis Peponis, Operations Director, Sun Enterprises; Konstantinos Psaltis, Managing Director, Sun Enterprises; Lefteris Karaminas, ABS Academy; Michael Fragias, DMR, Sun Enterprises; and Frantzeskos Kontos, Technical Director, Sun Enterprises.

Sun Enterprises was recently awarded the ABS Certificate of Appreciation for its continual endeavor and commitment to providing systematic corporate training of its shipboard and shore-based personnel.

From left: Vassilis Peponis, Operations Director, Sun Enterprises; Konstantinos Psaltis, Managing Director, Sun Enterprises; Lefteris Karaminas, ABS Academy; Michael Fragias, DMR, Sun Enterprises; and Frantzeskos Kontos, Technical Director, Sun Enterprises.

Sun Enterprises was recently awarded the ABS Certificate of Appreciation for its continual endeavor and commitment to providing systematic corporate training of its shipboard and shore-based personnel.

From left: Vassilis Peponis, Operations Director, Sun Enterprises; Konstantinos Psaltis, Managing Director, Sun Enterprises; Lefteris Karaminas, ABS Academy; Michael Fragias, DMR, Sun Enterprises; and Frantzeskos Kontos, Technical Director, Sun Enterprises.

Sun Enterprises was recently awarded the ABS Certificate of Appreciation for its continual endeavor and commitment to providing systematic corporate training of its shipboard and shore-based personnel.

From left: Vassilis Peponis, Operations Director, Sun Enterprises; Konstantinos Psaltis, Managing Director, Sun Enterprises; Lefteris Karaminas, ABS Academy; Michael Fragias, DMR, Sun Enterprises; and Frantzeskos Kontos, Technical Director, Sun Enterprises.

Sun Enterprises was recently awarded the ABS Certificate of Appreciation for its continual endeavor and commitment to providing systematic corporate training of its shipboard and shore-based personnel.

From left: Vassilis Peponis, Operations Director, Sun Enterprises; Konstantinos Psaltis, Managing Director, Sun Enterprises; Lefteris Karaminas, ABS Academy; Michael Fragias, DMR, Sun Enterprises; and Frantzeskos Kontos, Technical Director, Sun Enterprises.
New Additions to ABS Governance

150th Annual Meeting of the Classification Society

At the 150th Annual Meeting of the Members of ABS, three industry leaders were elected to the ABS Council. Following the Annual Meeting, the ABS Council met and elected industry leaders to both its Marine and Offshore Technical Committees. Individuals serving on the ABS Council and the Technical Committees help guide the class society in fulfilling its mission of promoting the security of life, property and the natural environment.

“Classification represents the concept of self-regulation for the marine and offshore industry,” said ABS President and CEO Christopher J. Wiernicki. “Members of ABS support the organization in developing appropriate solutions to address the challenges faced by industry in both operations and regulatory compliance. A robust and involved membership is paramount to the fulfillment of our mission.”

In celebration of ABS’ 150th Anniversary, the Annual Meeting was held in the same building in which ABS was established exactly 150 years ago. In 1862, key leaders of America’s maritime industry gathered at the Merchant Exchange Building (55-57 Wall Street, New York City) and founded the American Shipmasters’ Association – the predecessor of ABS.

At the Annual Meeting the following members were elected to a three-year term on the ABS Council:

- Datuk Nasarudin bin Md Idris, MISC Berhad
- Renee Klimczak, BG North America, LLC
- David W. Williams, Noble Drilling Services Inc

Following the Annual Meeting, the ABS Council made the following elections:

For a three-year term as a member of the ABS Marine Technical Committee:

- Hitoshi Fujita, Imabari Shipbuilding Co. Ltd., Marugame-shi, Kagawa

For a three-year term as members of the ABS Offshore Technical Committee:

- William Bennett, Bennett & Associates, LLC
- YoungHwan Chung, STX Offshore & Shipbuilding Co., Ltd.
For a two-year term as members of the ABS Offshore Technical Committee:

- Stan Bond, Hess Corporation (E&P)
- Mark Burns, Ensco International Incorporated
- David Cusiter, Ocean Rig Asa
- Paul Erb, BP America Inc.
- Lars Felix, Bassoe Technology
- Tomazo Garzia Neto, PROJEMAR Estudos e Projetos De Engenharia
- Gary Mitchell, Anadarko Petroleum Corporation
- Hans Mommaas, GustoMSC Inc.
- Peter Noble, ConocoPhillips Company

For a one-year term as members of the ABS Offshore Technical Committee:

- Ing. Massimo Antonelli, SAIPEM S.p.A.
- Christopher Barras, Shell
- J. Keith Elliott, Noble Energy, Inc.
- Joe Gebara, Technip
- Paul Geiger, Jr., Friede & Goldman, Ltd.
- Gregers Kudsk, Maersk Drilling
- Jong Bong Park, Hyundai Heavy Industries Co., Ltd.
- Cristina Pinho, Petroleo Brasileiro S.A. – Petrobras
- John Rynd, Hercules Offshore Inc.
- Barry Smith, Atwood Oceanics, Inc.
- John Vecchio, Diamond Offshore Drilling, Inc.
- Dr. Maria Ximenes, Chevron Shipping
Christopher J. Wiernicki, ABS President and CEO presents an ABS membership plaque to Jai-Seong Lee, President and CEO, Hyundai Heavy Industries Co., Ltd.

Alex Monsen, Vice President Deepwater Projects, Seadrill Deepwater Unit Pte. Ltd. receives an ABS membership plaque from Eric Kleess, ABS Pacific Division President and COO.

Bob Gilman, ABS Americas Division President and COO presents an ABS membership plaque to Nickel H.S. Van Reesema, Co-Founder and Principal, MidOceanMarine, LLC.

Won-Kil Choi, CEO, Hyundai Mipo Dockyard Co., Ltd. receives an ABS membership plaque from Stephen Auger, ABS Senior Vice President of Operations, Pacific Division.

Eric Kleess, ABS Pacific Division President and COO presents an ABS membership plaque to Minoru Murata, President, Japan Drilling Company.

Per Ellingsen, Managing Director, Ellingsen Ship Management, Sweden receives an ABS membership plaque from John Gallagher, ABS Regional Vice President, Northern Europe.
Joe Brincat, ABS Regional Vice President, Middle East presents an ABS membership plaque to Khamis Juma Buamim, Chairman, Drydocks World and Maritime World.

Eric Kleess, ABS Pacific Division President and COO presents an ABS membership plaque to Takashi Miyazaki, President, Mitsubishi Corporation.

Claes Andersson, ABS District Manager, Sweden presents an ABS membership plaque to Mikko Niini, President, Aker Arctic Technology.

John McDonald, ABS Chief of Staff, presents an ABS membership plaque to Soren Andersen, Head of Vessel Management, Maersk Line, Copenhagen.

Paul DeLaine, ABS Country Manager, Mexico presents an ABS membership plaque to Gabriel Delgado Saldivar, Director, Maritima de Ecologia, S.A. de C.V., while Derek Novak, ABS Vice President of Operations, Americas Division looks on.

Steve Gumpel, ABS Vice President of Business Development, Americas Division presents an ABS membership plaque to Jack Noonan, CEO, BLT Chembulk of Southport, Connecticut, while Jim Liebertz, ABS Consultant looks on.
Kuldeep Mathur, CEO, Blue Lines Shipping Pte Ltd. receives an ABS membership plaque from Joe Brincat, ABS Regional Vice President, Middle East.

Eric Kleess, ABS Pacific Division President and COO presents an ABS membership plaque to Toshiro Miyazaki, President, Mitsubishi Ore Transportation Co., Ltd.

Eric Kleess, ABS Pacific Division President and COO presents an ABS membership plaque to Toshifumi Inami, President, Mitsubishi Ore Transportation Co., Ltd.

Frank Tollefsen, Senior Vice President of Operations, Ocean Rig receives an ABS membership plaque from John McDonald, ABS Chief of Staff.

Claes Andersson, ABS District Manager, Sweden presents an ABS membership plaque to Mats Ruhne, Owner, Holy House Shipping.

Derek Novak, ABS Vice President of Operations, Americas Division presents an ABS membership plaque to Jose Orlando Azevedo, President, Petrobras America Inc.
ABS Members

Peter Jacobsson, CEO, Floatel International, Sweden receives an ABS membership plaque from John Jude Gallagher, ABS Director, Offshore Technology and Business Development, Europe Division.

Joe Brincat, ABS Regional Vice President, Middle East presents an ABS membership plaque to Aniello Esposito, President, Gulf Stolt Ship Management.

Vassilios Kroustallis, ABS Regional Vice President, Europe presents an ABS membership plaque to Dimitrios Korkodilos, Andriaki Shipping Co. Ltd.

Yoshifumi Yushita, President, Sasebo Heavy Industries Co., Ltd. receives an ABS membership plaque from Eric Kleess, ABS Pacific Division President and COO.

Arturo Cors de la Fuente, General Manager of Maritime Operations and Ports, PEMEX receives an ABS membership plaque from Paul DeLaire, ABS Country Manager, Mexico.

Örjan Larsson, Marine Consultant, Promaris AB, Sweden receives an ABS membership plaque from Claes Andersson, ABS District Manager, Sweden.
Considered one of the most prestigious awards in the maritime industry, the United Seamen’s Service Admiral of the Ocean Seas (AOTOS) award recognizes individuals who have made significant contributions to the American shipping industry and its seafarers worldwide. ABS Chairman Robert D. Somerville was presented the award in October 2011.

During his tenure as Chairman of the International Association of Classification Societies (IACS), Somerville championed the introduction of new, technically superior standards for the design of the principal commercial ship types. This included the adoption of IACS Common Structural Rules which set the international standards for the building of new vessels. This initiative, which represented one of the most significant changes in ship classification since its inception, illustrates Somerville’s lifetime commitment to the safety of the maritime industry.

With an emphasis on the future of the maritime industry, Somerville has championed the education of future generations of maritime professionals for many years. This support ranges from funding technical research projects at many universities, to scholarships for individual students, to multimillion dollar infrastructure projects. Somerville’s fundamental goal has been for ABS to be the spark for maritime education renewal throughout the US and the world.

Reflecting on his illustrious career and ABS’ 150th anniversary, Somerville says, “I have been fortunate to lead an organization that has been at the forefront of promoting safety across the industry. I want generations to come to build on our proud past, to maintain our reputation for integrity and impartiality and to continue the pursuit of ABS’ unique mission in the decades ahead.”

ABS recently awarded scholarships to students from three United Kingdom universities in recognition of their academic achievements within the fields of marine engineering and naval architecture.

John McDonald, former ABS Europe Division President and COO and recently named ABS Chief of Staff was in London to present students with their individual awards. During the presentation, McDonald highlighted the importance of this ABS scholarship program as a means of identifying the next generation of marine and offshore personnel while encouraging and supporting these students as they embark on their careers, whether within classification or other sectors of the maritime industry. ABS has an extensive program of annual student scholarships with universities throughout the world.

Among the recipients were Nikolas Gounaris and Alexander Routledge of Newcastle University; James Brown and Kimberley Travers from the University of Strathclyde, Glasgow; and Piotr Laszczak from the University of Southampton.
Global Management Appointments

Americas Division
Joao Carlos (J.C.) Pacheco, previously Country Manager for Brazil, has been appointed Director of Business Development for South America.

Luiz Menicucci, who has been working under the leadership of Pacheco, will assume the role of Country Manager of Brazil. Prior to this assignment, he was the Regional Country Manager based in Chile.

Marcelo Barros, previously Principal Engineer in the Rio de Janeiro Project Management office, has been named Assistant Country Manager of Brazil.

Europe Division
Kirsi Tikka has been transferred to London to assume the responsibilities of President and COO of the Europe Division. Previously she served as Chief Engineer.

Greater China Division
Brad Achorn, previously Regional Vice President of Nautical Systems in Piraeus, Greece, has relocated to Taipei, Taiwan, as Vice President, Northern Region, Greater China Division.

Nautical Systems Division
Rogerio Vieira has been transferred to Piraeus, Greece, as Director of Sales for ABS Nautical Systems after previously serving as Regional Sales Manager based in Houston.

Pacific Division
Hoseong Lee has been appointed Vice President of Global Korean Technology Development. In his previous position, he served as Director, Global Technology and Business Development.

Luiz Motta transferred to Busan, Korea, as Chief Engineer, Structures after serving as Director, Technology and Business Development based in Piraeus, Greece.

Jang-Ho Yoon transferred to Busan, Korea, as Director of Engineering after previously serving as Director, Technology and Business Development for the Northern Pacific Region.

Headquarters
Tony Nassif has been elected Executive Vice President and COO and will be based in Houston, TX. Previously he served as the President and CEO for ABS Group of Companies.

James (Jim) Gaughan, previously a consultant with ABS, has been appointed Chief Engineer and will be based in New York.

Robert Giuffra has been named Senior Vice President, Service Delivery. In his previous position, he served as Senior Vice President, Quality and Service.

Tom Kirk has transferred to Houston as Director of Environmental Programs. In his previous position, he served as Vice President of Engineering for the Greater China Division.

John McDonald, formerly President and COO of the Europe Division, has been appointed Chief of Staff and will be based in Houston.

Adam Moilanen, previously serving as Chief of Staff has been named Vice President, Quality based in Houston.
ABS Events and Conferences Calendar

24-28 June 2012
International Congress of Marine Corrosion & Fouling (ICMCF)
Seattle, WA, US
ABS Presenter: Johnny Eliasson
http://icmcf.org/default.aspx

26-27 June 2012
High Performance Craft Expo (HiPer Craft)
Norfolk, VA, US
Booth #: 235
www.navalengineers.org

1-5 July 2012
International Conference on Ocean, Offshore & Arctic Engineering (OMAE)
Rio de Janeiro, Brazil
ABS Presenters: Milton Korn, Michael Lee, Naveen Selvam & Christina Wang
ABS Panelist: Paul Walters
www.asmeconferences.org/omae2012

28-31 August 2012
Offshore Northern Seas
Stavanger, Norway
Stand #: M1120
www.ons.no

3 September 2012
Mare Forum Istanbul
Istanbul, Turkey
Sponsored by ABS
www.mareforum.com

4-7 September 2012
Shipbuilding, Machinery & Marine Technology (SMM)
Hamburg, Germany
Stand #: B3.EG 311
http://smm-hamburg.de

17-20 September 2012
Canadian Ferry Operators Association (CFOA) AGM
Victoria, BC, Canada
Sponsored by ABS
www.cfoavictoria2012.ca

17-20 September 2012
ICETECH
Banff, Alberta, Canada
ABS Presenter: John Dolny
www.icetech12.org

17-18 September 2012
Rio Oil & Gas
Rio de Janeiro, Brazil
ABS Presenter: Roberto Lobo
www.ibp.org.br

18-19 September 2012
FPSO Congress
Singapore
Sponsored by ABS
www.fpsoasia.com

20-21 September 2012
Global Greenship
Washington, DC, US
Sponsored by ABS
www.marinelog.com
Newly Classed Vessels and Recent Contracts

1 September 2011 - 31 March 2012
Newly Classed Vessels and Facilities

TANKERS

ANDES, 29,429 gt / 49,995 dwt, VEC, AB-CM, CSR, ES 2020, RRDA, built by Onomichi Dockyard for Ocean Growth Shipping

AQUALEADER, 61,237 gt / 115,669 dwt, AB-CM, CSR, VEC, TCM, BWE, ENVIRO, GP, built by Samsung H I for Bora Maritime

AQUALegend, 61,237 gt / 115,571 dwt, AB-CM, CSR, VEC, TCM, BWE, ENVIRO, GP, built by Samsung H I for Levanter Maritime

AQUALIBERTY, 61,237 gt / 115,649 dwt, AB-CM, CSR, VEC, TCM, BWE, ENVIRO, GP, RRDA, built by Samsung H I for Sirocco Maritime

BELMAR, 61,332 gt / 115,904 dwt, AB-CM, CSR, ES, Ice Class “IC”, NIBS, VEC-L, TCM, built by Samsung H I for Olympian Poseidon Owners

BUNGA LOTUS, 11,925 gt / 19,992 dwt, VEC, RRDA, built by Fukuoka Shipbuilding for Orange Lynx

CALIDA, 61,332 gt / 115,812 dwt, AB-CM, CSR, ES, NIBS, VEC-L, TCM, built by Samsung H I for Olympian Demeter Owners

CAPE ENDLESS, 60,193 gt / 109,554 dwt, VEC, TCM, SH, SHCM, built by Hudong-Zhonghua Shipbuilding for Orion Bulkers

CAPE ENTERPRISE, 90,193 gt / 109,581 dwt, SH, SHCM, VEC, TCM, RRDA, built by Hudong-Zhonghua Shipbuilding for Orion Bulkers

CHAMPION PRINCE, 59,024 gt / 105,258 dwt, AB-CM, CSR, VEC, built by Hyundai H I for Nagasaki Shipholding

DESIMI, 156,651 gt / 296,865 dwt, VEC, TCM, SH, SHCM, RRDA, built by Shanghai Jiangnan-Changxing Shipbuilding for Virgil Marine

DIMITRIS P, 81,314 gt / 149,993 dwt, VEC-L, TCM, AB-CM, BWE, CSR, ENVIRO, GP, RRDA, built by Sungdong Shipbuilding & Marine Engineering for Medway Sea

DUBAI BEAUTY, 63,298 gt / 115,382 dwt, AB-CM, CSR, VEC, TCM, BWE, RRDA, built by Hanjin H I & Construction for Beauty Maritime

DUBAI BRILLIANCE, 63,298 gt / 115,617 dwt, AB-CM, CSR, VEC, TCM, BWE, RRDA, built by Hanjin H I & Construction for Brilliance Maritime

ELISALEX SCHULTE, 11,246 gt / 16,418 dwt, ES 2020, TCM, built by Jiangxi Jiangzhou Union Shipbuilding for Intrepid Chem 1021

FPMC 27, 29,744 gt / 49,997 dwt, AB-CM, CSR, VEC, TCM, BWE, RRDA, built by STX Offshore & Shipbuilding for FPMC Century Marine

FPMC 28, 29,744 gt / 50,474 dwt, AB-CM, CSR, VEC, TCM, BWE, RRDA, built by STX Offshore & Shipbuilding for FPMC Formula Marine

FPMC 29, 29,744 gt / 50,546 dwt, AB-CM, CSR, VEC, TCM, BWE, built by STX Offshore & Shipbuilding for FPMC Grace Marine

FPMC P HERON, 59,174 gt / 114,380 dwt, AB-CM, CSR, VEC, built by Sasebo H I for FPMC Hero Marine

GAMALAMA, 63,005 gt / 88,322 dwt, AB-CM, CSR, ES, VEC, TCM, SPMA, RRDA, built by Jiangsu Eastern H I for Pertamina

HIMALAYA, 29,429 gt / 49,995 dwt, AB-CM, CSR, ES 2020, VEC, RRDA, built by Onomichi Dockyard for Noble Sea Shipping

INTREPID CANADA, 11,246 gt / 16,421 dwt, TCM, ES 2020, RRDA, built by Jiangxi Jiangzhou Union Shipbuilding for Intrepid Chem 1021

INTREPID REPUBLIC, 11,246 gt / 16,412 dwt, ES 2020, TCM, built by Jiangxi Jiangzhou Union Shipbuilding for Intrepid Chem 1025

ITHAKI, 160,487 gt / 317,976 dwt, NBL, VEC-L, TCM, AB-CM, CSR, ES, GP, RRDA, built by Hyundai H I for Lindt Investment

LENI P, 81,509 gt / 158,640 dwt, AB-CM, CSR, TCM, BWE, SPMA, ENVIRO, GP, RRDA, built by Samsung H I for Summerton Investments

MAERSK HAYAMA, 156,915 gt / 297,221 dwt, SH, SHCM, VEC, built by Universal Shipbuilding for Dane Star
MAERSK HEIWA, 156,915 gt / 297,221 dwt, SH, SHCM, VEC, built by Universal Shipbuilding for Mars Palace
MAERSK MIYAJIMA, 28,777 gt / 39,100 dwt, VEC, SHR, RRDA, built by Iwagi Zosen for Maxim Sunlight
MARIA, 81,247 gt / 157,523 dwt, AB-CM, CSR, RES, ES, VEC-L, TCM, RRDA, built by Samsung H I for Larvotto Shipholding
MARINE CHAMPION, 724 gt / 988 dwt, built by Ocean Leader Shipbuilding for Da An Shipping
MEGACORE PANTHEA, 42,208 gt / 74,594 dwt, AB-CM, CSR, VEC-L, TCM, ENVIRO, GP, built by Hyundai Mipo Dockyard for Rain Navigation
MELODIA, 81,384 gt / 158,671 dwt, VEC, TCM, AB-CM, CSR, ES, SPMA, RRDA, built by Samsung H I for Colt Marine
NAVE ANDROMEDA, 42,338 gt / 74,999 dwt, SHR, SHCM, VEC, TCM, BWE, ENVIRO, GP, built by Sungdong Shipbuilding and Engineering for Folegandros Shipping
NISSOS KYTHNOS, 61,242 gt / 115,674.4 dwt, VEC, TCM, AB-CM, CSR, GP, BWE, RRDA, built by Samsung Heavy Industries for Kythnos Marine
NISSOS SERIFOS, 61,242 gt / 115,689 dwt, AB-CM, CSR, VEC, TCM, BWE, GP, built by Samsung H I for Anafi Marine
OCEAN HERO, 11,999 gt / 16,656 dwt, Ice Class "IA", NBLES, VEC, TCM, built by Liaoning Hongguan Shipbuilding for Ocean Tankers
OCEAN HONGKONG, 116,955 gt / 228,517 dwt, SH, SHCM, GRAB(25), TCM, built by CSSC Guangzhou Longxue Shipbuilding for Ocean Hong Kong Maritime
OCEAN LEADER, 11,999 gt / 16,656 dwt, Ice Class "IA", NBLES, VEC, TCM, built by Liaoning Hongguan Shipbuilding for Ocean Tankers
OCEAN PREMIER, 11,999 gt / 16,625 dwt, Ice Class "IA", NBLES, VEC, TCM, built by Liaoning Hongguan Shipbuilding for Ocean Tankers
OLVIA, 5,034 gt / 6,352 dwt, VEC, RRDA, built by Zhenjiang Sopo Shipbuilding for Pearl Hunter Shipping
OVERSEAS ATHENS, 30,031 gt / 50,342 dwt, AB-CM, CSR, RES, VEC-L, TCM, BWE, GP, built by SPP Shipbuilding for Athens Product Tanker
OVERSEAS MILOS, 30,031 gt / 50,378 dwt, VEC-L, TCM, AB-CM, BWE, CSR, GP, RES, RRDA, built by SPP Shipbuilding for Milos Product Tanker
OVERSEAS SAMAR, 42,153 gt / 73,920 dwt, AB-CM, CSR, RES, ES, VEC, TCM, BWE, RRDA, built by SPP Shipbuilding for Sanmar Product Tanker
PECHORA STAR, 8,537 gt / 13,021 dwt, VEC, GP, built by 21st Century Shipbuilding for Rigel Bereederungs
PHOENIX BEACON, 57,249 gt / 105,400 dwt, NBL, VEC-L, AB-CM, CSR, ENVIRO, GP, RES, RRDA, built by Hyundai H I for Phoenix Energy Navigation
PHOENIX CONCORD, 57,249 gt / 105,525 dwt, AB-CM, CSR, RES, NBL, VEC-L, TCM, ENVIRO, GP, built by Hyundai H I for Phoenix Concord
PHOENIX STRENGTH, 57,249 gt / 105,400 dwt, NBL, VEC-L, AB-CM, CSR, ENVIRO, GP, RES, RRDA, built by Hyundai H I for Phoenix Strength
QI LIAN SAN, 164,169 gt / 318,348 dwt, AB-CM, CSR, VEC-L, GP, built by Shanghai Jiangnan-Changxing Shipbuilding for Nan King Maritime
RRD GINO FERRETTI, 60,205 gt / 107,546 dwt, AB-CM, CSR, VEC, TCM, built by Tsuneishi Shipbuilding for Rizzo-Bottiglieri-De Carlini Armatori
ROSS SEA, 59,180 gt / 114,542 dwt, AB-CM, CSR, VEC-L, GP, RRDA, built by Sasebo H I for Barty Shipping
RUN ZE, 6,111 gt / 9,016 dwt, APS, VEC, TCM, built by CCQD Shipbuilding Industry for Evergreen Shipping & Trading
SAMAIL, 156,836 gt / 302,845 dwt, AB-CM, CSR, VEC, TCM, RRDA, built by Universal Shipbuilding for Samail Maritime Transportation
SAMCO AMAZON, 160,928 gt / 314,249 dwt, NIBS, VEC-L, AB-CM, BWE, CSR, ENVIRO, GP, SPMA, RRDA, built by Hyundai Samho H I for Samco ETA
OCEAN HERO, a 16,656 dwt oil and chemical tanker, Ice Class "IA", NBLES, VEC, TCM, built by Liaoqing Hongguan Shipbuilding for Ocean Tankers.

BUENOS AIRES, a 83,366 dwt bulk carrier, BC-A, AB-CM, CSR, GRAB(20), TCM, ENVIRO, GR, built by Sanoyas Shipbuilding for Sea Breeze Maritime.
CONTI LAPISLAZULI, 33,036 gt / 57,001 dwt, BC-A, AB-CM, CSR, ES, GRAB(20), TCM, built by Taizhou Sanfu Ship Engineering for Bulker KG “Conti Lapislazuli”

CONTI LARIMAR, 33,036 gt / 57,075 dwt, BC-A, AB-CM, CSR, ES, GRAB(20), TCM, built by Taizhou Sanfu Ship Engineering for Conti Larimar Shipping

CSK BRILLIANCE, 94,051 gt / 179,942 dwt, BC-A, AB-CM, CSR, GRAB(25), TCM, GP, built by Daewoo Shipbuilding & Marine Engineering for Brilliance Navigation

DAN MAY, 106,884 gt / 206,125 dwt, BC-A, AB-CM, CSR, GRAB(25), TCM, RRDA, built by Shanghai Waigaoqiao Shipbuilding for Dan May Maritime

DESiERT GLORY, 31,901 gt / 57,412 dwt, BC-A, AB-CM, CSR, GRAB(25), RRDA; built by Hyundai Mipo Dockyard for Caribbean

DESiERT HOPE, 33,631 gt / 57,411 dwt, BC-A, AB-CM, CSR, GRAB(25), RRDA; built by Hyundai Mipo Dockyard for Montenegro Marine

DESiERT SPRiNG, 33,631 gt / 57,437 dwt, BC-A, AB-CM, CSR, GRAB(25), built by Hyundai Mipo Dockyard for Moritz Shipping & Investment

DESiERT VICTORY, 33,631 gt / 57,434 dwt, BC-A, AB-CM, CSR, GRAB(25), RRDA; built by Hyundai Mipo Dockyard for Pimlico International

DNI MILLET, 34,402 gt / 58,444 dwt, BC-A, AB-CM, CSR, GRAB(20), TCM, built by SPP Shipbuilding for Deniz Nakliyat

DNI VATAN, 34,402 gt / 58,923 dwt, BC-A, TCM, GRAB(20), AB-CM, CSR, RRDA, built by SPP Shipbuilding for Deniz Nakliyat

ETOILE, 23,443 gt / 34,420 dwt, BC-A, AB-CM, CSR, GRAB(20), TCM, GP; built by SPP Shipbuilding for Thirtyfirst Aare Shipping

EXCEL, 91,373 gt / 176,419 dwt, BC-A, AB-CM, CSR, GRAB(25), TCM, GP, RRDA, built by Shanghai Waigaoqiao Shipbuilding for New Excel Marine

FOUR BUTTERFLY, 23,456 gt / 34,423 dwt, BC-A, AB-CM, CSR, TCM, GRAB(20), GP; built by SPP Shipbuilding for Four Handy

FPM C B 103, 62,272 gt / 106,668 dwt, BC-A, AB-CM, CSR, GRAB(20), TCM, BWE, built by STX Dalian Shipbuilding for FPMC Hero Marine

FPM C B 104, 62,272 gt / 106,690 dwt, BC-A, TCM, GRAB(20), AB-CM, CSR, RRDA, built by STX Dalian Shipbuilding for FPMC 104 Marine

GENCO MARE, 23,456 gt / 34,428 dwt, BC-A, AB-CM, CSR, GRAB(20), GP, TCM, RRDA, built by SPP Shipbuilding for Genco Mare

GENCO SPIRiT, 23,456 gt / 34,393 dwt, BC-A, AB-CM, CSR, GRAB(20), GP, built by SPP Shipbuilding for Genco Spirit

GLOBAL TALENT, 92,839 gt / 179,407 dwt, BC-A, AB-CM, CSR, GRAB(20), TCM, BWE, built by Hyundai H I for Carp Maritime

GLOBAL TRUST, 92,839 gt / 179,407 dwt, BC-A, AB-CM, CSR, GRAB(20), TCM, BWE, built by Hyundai H I for Carp Maritime

GOLDEN ENTERPRISE, 43,498 gt / 79,452 dwt, BC-A, TCM, GRAB(20), AB-CM, BWE, CSR, ES, RRDA, built by Zhoushan Jinhaiwan Shipyard for Golden Enterprise

GRAND ALMA, 43,501 gt / 79,445 dwt, BC-A, TCM, GRAB(20), AB-CM, BWE, CSR, RRDA, built by Zhoushan Jinhaiwan Shipyard for Grand Chang Jiang Shipping

GRAND AMANDA, 43,501 gt / 79,467 dwt, BC-A, TCM, GRAB(20), AB-CM, BWE, CSR, RRDA, built by Zhoushan Jinhaiwan Shipyard for Grand Chang Jiang Shipping

HEILAN CRUISER, 33,044 gt / 56,922 dwt, BC-A, AB-CM, CSR, GRAB(20), TCM, built by Shanghai Shipyard for NHG Shipping

HEILAN JOURNEY, 33,044 gt / 56,900 dwt, BC-A, TCM, GRAB(20), AB-CM, CSR, RRDA, built by Shanghai Shipyard for NHF Shipping

IKAN PARANG, 33,010 gt / 56,618 dwt, BC-A, AB-CM, CSR, GRAB(20), TCM, RRDA, built by Taizhou Koun Shipbuilding for Parang Shipping

JAG RANI, 33,036 gt / 56,819 dwt, BC-A, AB-CM, CSR, GRAB(20), TCM, RRDA, built by COSCO (Zhoushan) Shipyard for Great Eastern Shipping

K. GLOBAL PRiDE, 93,290 gt / 179,185 dwt, BC-A, AB-CM, CSR, GRAB(20), TCM, GP, built by Hyundai H I for Harmony Shipholding

CONTI LARIMAR, a 57,075 dwt bulk carrier, BC-A, AB-CM, CSR, ES, GRAB(20), TCM, built by Taizhou Sanfu Ship Engineering for Conti Larimar Shipping.

ETOILE, a 34,420 dwt bulk carrier, BC-A, AB-CM, CSR, GRAB(20), TCM, GP, built by SPP Shipbuilding for Thirtyfirst Aare Shipping.

FOUR BUTTERFLY, a 34,423 dwt bulk carrier, BC-A, AB-CM, CSR, TCM, GRAB(20), GP, built by SPP Shipbuilding for Four Handy.
K. HAPPINESS, 93,290 gt / 179,185 dwt, BC-A, AB-CM, CSR, GRAB(20), TCM, GP, built by Hyundai H I for Concord Shipholding

KAMLESH, 62,271 gt / 106,590 dwt, BC-A, AB-CM, CSR, GRAB(20), TCM, BWE, built by STX Dalian Shipbuilding for Essar Shipping

LAN MAY, 106,884 gt / 206,007 dwt, BC-A, AB-CM, CSR GRAB(20), TCM, RRDA, built by Shanghai Waigaoqiao Shipbuilding for Lan May Maritime

LAST TYCOON, 22,549 gt / 34,604 dwt, BC-A, AB-CM, CSR, GRAB(20), TCM, RRDA, built by Shanhuaiguan Shipbuilding Industry for Celebes Wind

LDN FORTUNA, 51,255 gt / 93,251 dwt, BC-A, AB-CM, CSR, GRAB(20), TCM, built by Jiangsu New Yangzi Shipbuilding for Liberty De Navigazione

MANDARIN GRACE, 33,034 gt / 56,693 dwt, BC-A, AB-CM, CSR, GRAB(20), TCM, BWE, built by Jiangsu Hantong Ship H I for Mandarin Grace Shipping

MANDARIN TRADER, 33,034 gt / 56,677 dwt, BC-A, AB-CM, CSR, GRAB(20), TCM, BWE, built by Jiangsu Hantong Ship H I for Mandarin Trader Shipping

MARVELLOUS, 92,941 gt / 179,178 dwt, BC-A, AB-CM, CSR, GRAB(20), TCM, GP, built by Sungdong Shipbuilding and Engineering for Marvellous Navigation

MILOS WARRIOR, 92,944 gt / 179,275 dwt, BC-A, TCM, GRAB(20), AB-CM, CSR, RRDA, built by Sungdong Shipbuilding & Marine Engineering for Raynham Maritime

MINANUR CEBI 1, 23,322 gt / 33,810 dwt, BC-A, AB-CM, CSR, ES, GRAB(30), TCM, RRDA, built by 21st Century Shipbuilding for Tayfun Gemi Isletmecligi Ve Ticaret A.S.

MINERAL MANILA, 93,733 gt / 179,842 dwt, BC-A, TCM, GRAB(20), AB-CM, BWE, CSR, RRDA, built by Hanjin Heavy Industries & Construction for Bocimar International

NEW ZOSCO HANGZHOU, 91,971 gt / 175,851 dwt, BC-A, AB-CM, CSR, GRAB(25), TCM, built by Zhoushan Jinhaiwan Shipyards for New Zosco Hangzhou Shipping

NINGBO SEAL, 41,254 gt / 76,048 dwt, BC-A, TCM, GRAB(20), AB-CM, CSR, RRDA, built by Hudong-Zhonghua Shipbuilding for Hong Kong Seal Shipping

NORD AQUARIUS, 45,259 gt / 81,838 dwt, BC-A, TCM, GRAB(25), AB-CM, CSR, built by CSSC Guangzhou Longxue Shipbuilding for Norden Shipping

NORD AQUILA, 45,259 gt / 81,712 dwt, BC-A, TCM, GRAB(25), ABI-CM, CSR, built by CSSC Guangzhou Longxue Shipbuilding for Norden Shipping

OCEAN CHINA, 116,955 gt / 228,915 dwt, TCM, SH, GRAB(25), SHCM, RRDA, built by CSSC Guangzhou Longxue Shipbuilding for Ocean China Maritime

OSOGOVO, 19,906 gt / 30,693 dwt, BC-A, AB-CM, CSR, GRAB(20), Ice Class “IC”, TCM, built by Shanhuaiguan Shipbuilding Industry for Navigation Maritime Bulgare

PACIFIC HOPE, 17,009 gt / 28,200 dwt, BC-A, SHR, GRAB(20), built by Imabari Shipbuilding for Libero

PARISIANA, 22,549 gt / 34,604 dwt, BC-A, AB-CM, CSR, GRAB(20), TCM, RRDA, built by Shanhuaiguan Shipbuilding Industry for Paris Handysize

PLATON, 34,378 gt / 58,923 dwt, BC-A, TCM, GRAB(20), AB-CM, CSR, RRDA, built by SPP Shipbuilding for Kefalonia Shipping

PORT DALIAN, 33,036 gt / 56,737 dwt, BC-A, AB-CM, CSR, GRAB(20), TCM, built by COSCO (Zhoushan) Shipyards for Portland Transportes Maritimos Internacionales

POS TANSANIT, 51,195 gt / 92,776 dwt, BC-A, AB-CM, CSR, GRAB(20), TCM, RRDA, built by COSCO (Zhoushan) Shipyards for Conti 178 Schiffsfahts-KG NR.1

POS TOPAS, 51,195 gt / 92,665 dwt, BC-A, AB-CM, CSR, GRAB(20), TCM, built by COSCO (Zhoushan) Shipyards for Conti 178 Schiffsfahts-KG NR.1

FPMC B, a 106,690 dwt bulk carrier, BC-A, AB-CM, CSR, GRAB(20), TCM, BWE, built by STX Dalian Shipbuilding for FPMC Hero Marine.

FPMC B 103, a 106,668 dwt bulk carrier, BC-A, AB-CM, CSR, GRAB(20), TCM, BWE, built by STX Dalian Shipbuilding for FPMC 104 Marine.

GENCO SPIRIT, a 34,393 dwt bulk carrier, BC-A, AB-CM, CSR, GRAB(20), TCM, GP, built by SPP Shipbuilding for Genco Spirit.
POS TUERKIS, 51,195 gt / 92,759 dwt, BC-A, AB-CM, CSR, GRAB(20), TCM, RRDA, built by COSCO (Zhoushan) Shipyard for Conti 180 Schifffahrts, Bulker KG MS Conti Tuerkis

PRETTY, 91,971 gt / 149,992 dwt, BC-A, TCM, GRAB(25), AB-CM, CSR, RRDA, built by Zoushan Jinhaiwan Shipyard for Pretty Shipping

Q MYRTALIA, 91,373 gt / 177,979 dwt, BC-A, SH, SHCM, GRAB(25), TCM, built by Shanghai Waigaoqiao Shipbuilding for Q Myrtalia Shipping

REGALICA, 13,579 gt / 16,619 dwt, Ice Class "IC", NBL, TCM, BWE, RRDA, built by Taizhou Sanfu Ship Engineering for Hermione One Maritime

SANKO FRONTIER, 40,325 gt / 74,962 dwt, BC-A, AB-CM, CSR, GRAB(20), TCM, built by Sasebo H I for Frontier Bulkship

SPL TARAPACA, 23,440 gt / 34,790 dwt, BC, TCM, GRAB(20), AB-CM, CSR, GP, RRDA, built by SPP Shipbuilding for Empresa Maritima

SPRING GLORY, 51,265 gt / 93,379 dwt, BC-A, PORT, TCM, GRAB(20), AB-CM, CSR, RRDA, built by Jiangsu New Yangzi Shipbuilding for Spring Glory Shipping

SPRING WEALTH, 51,265 gt / 93,347 dwt, BC-A, AB-CM, CSR, GRAB(20), PORT, TCM, built by Jiangsu New Yangzi Shipbuilding for Spring Wealth Shipping

STAR BOREALIS, 93,733 gt / 179,678 dwt, HIMP, BC-A, TCM, GRAB(20), AB-CM, BWE, CSR, ENVIRO, GP, RRDA, built by Hanjin Heavy Industries & Construction for Star Borealis

SUNLEAF GRACE, 33,900 gt / 61,683 dwt, BC-A, SHR, RRDA, built by Oshima Shipbuilding for Sunleaf Shipping

TALIA, 51,253 gt / 92,997 dwt, BC-A, AB-CM, CSR, GRAB(30), BWE, TCM, built by Taizhou Catic Shipbuilding H I for 1 Westbulk

TRANS NANJING, 51,255 gt / 93,226 dwt, BC-A, AB-CM, CSR, GRAB(20), PORT, TCM, built by Jiangsu New Yangzi Shipbuilding for Chemikalien Seetransport

TW JIANGSU, 51,265 gt / 93,225 dwt, BC-A, AB-CM, CSR, GRAB(20), PORT, built by Jiangsu New Yangzi Shipbuilding for MV TW Jiaingsu Shipping

UMBERTO D’AMATO, 51,255 gt / 93,263 dwt, BC-A, PORT, TCM, GRAB(20), AB-CM, CSR, RRDA, built by Jiangsu New Yangzi Shipbuilding for Perseveranza Spa Di Navigazione

VENUS HISTORY, 50,647 gt / 95,692 dwt, BC-A, TCM, GRAB(20), AB-CM, CSR, built by Imabari Shipbuilding for Shikoku Friendship Shipping

WELPROFIT, 51,265 gt / 93,250 dwt, BC-A, PORT, TCM, GRAB(20), AB-CM, CSR, RRDA, built by Jiangsu New Yangzi Shipbuilding for Star Borealis

W-STAR, 51,239 gt / 92,842 dwt, BC-A, AB-CM, CSR, GRAB(30), TCM, RRDA, built by Taizhou Catic Shipbuilding H I for Hanson Marine

XIAO XIAO, 41,254 gt / 76,098 dwt, BC-A, TCM, GRAB(20), AB-CM, CSR, RRDA, built by Hudong-Zhonghua Shipbuilding for Xiao Xiao Marine

YANGZTE XING ZHONG, 45,259 gt / 81,712 dwt, BC-A, AB-CM, CSR, GRAB(25), TCM, built by CSSC Guangzhou Longxue Shipbuilding for Fortune Ocean Shipping

ZOSCO JINHUA, 91,971 gt / 175,931 dwt, BC-A, TCM, GRAB(25), AB-CM, CSR, RRDA, built by Zoushan Jinhaiwan Shipyard for Zosco Jinhua Shipping

CONTAINERSHIPS

FAREEDA, 295 teu, built by Josefa Slipways for Ajman Shipping & Trading

LOG-IN JACARANDA, 2,700 teu, SH, SHCM, built by Eisa-Estaleiro Ilha for Log-In Logistica Intermodal

MAERSK CUNENE, 4,500 teu containership, SH, SHCM, NBL, TCM, built by Hyundai Samho H I for A P Moller Singapore

MAERSK CONGO, 4,500 teu, SH, SHCM, NBL, TCM, built by Hyundai H I for A P Moller Singapore

MAERSK CUNENE, a 4,500 teu containership, SH, SHCM, NBL, TCM, built by Hyundai Samho H I for A P Moller Singapore.

GRAND AMANDA, a 79,467 dwt bulk carrier, BC-A, TCM, GRAB(20), AB-CM, BWE, CSR, RRDA, built by Zoushan Jinhaiwan Shipyard for Grand Chang Jiang Shipping.

LOG-IN JACARANDA, a 2,700 teu containership, SH, SHCM, built by Eisa-Estaleiro Ilha for Log-In Logistica Intermodal.
MAERSK CUNENE, 4,500 teu, SH, SHCM, NBL, TCM, built by Hyundai Samho H I for A P Moller Singapore
NEVZAT KALKAVAN, 1,850 teu, Ice Class IC, NIBS, SH, SHCM, built by Sedef Gemi Insaati for Sedef Gemi Insaati
YM MILESTONE, 6,600 teu, SHR, ES 2020, NBL, TCM, RRDA, built by CSBC for All Oceans Transportation

GAS CARRIERS
GAS MYTH, 5,016 m³, FL (25), SHCM, SHR, RRDA, built by Kanrei Shipbuilding for Pelorus
LOBITO, 160,538 m³, SH, SH-DLA, SHCM, ES, RES, APS, NIBS, PORT, TCM, DFD, GSU, built by Samsung H I for Mint LNG III
MALANJE, 160,518 m³, SH, SH-DLA, SHCM, RES, ES, NIBS, PORT, TCM, DFD, GCU, RRDA, built by Samsung H I for Ming LNG II
SONANGOL SAMBIZANGA, 160,786 m³, SH, SH-DLA, SHCM, RES, NIBS, PORT, TCM, ENVIRO, GP, built by Daewoo Shipbuilding & Marine Engineering for Sonangol Sambizanga
SOYO, 160,518 m³, SH, SH-DLA, SHCM, RES, NIBS, PORT, TCM, DFD, GCU, RRDA, built by Samsung H I for Ming LNG I

OFFSHORE
Column Stabilized Drilling Units
ALPHA STAR, 27,065 gt, ØDPS-2, built by Keppel Fels for Alpha Star Equities
ATWOOD OSPREY, 30,923 gt, built by Jurong Shipyard for Atwood Oceancs Pacific
ENSCO 8504, 19,377 gt, ØDPS-2, built by Keppel Fels for ENSCO Worldwide
HAI YANG SHI YOU 981, 34,548 gt, ØDPS-3, built by Shanghai Waigaoqiao Shipbuilding for China National Offshore Oil (CNOOC)
PV DRILLING V, 15,424 gt, built by Keppel Fels for PVD Deepwater Drilling
SS AMAZÔNIA, 24,268 gt, ØOPS-2, built by Yantai CIMC Raffles Offshore for Baerfield Drilling

Drillships
CAROLINA, 67,890 gt, ØCDS, ØOPS-3, PORT, SH-DLA, built by Daewoo Shipbuilding & Marine Engineering for Carolina Marine
ETESCO TAKATSUGU J, 56,516 gt, SH-DLA, ØDPS-3, built by Samsung H I for Etesco Drilling Service
NORBE IX, 67,821 gt, SH-DLA, ØDPS-3, built by Daewoo Shipbuilding & Marine Engineering for Odebrecht Drilling Norbe IX
OCEAN RIG MYKONOS, 59,610 gt, SH-DLA, ØCDS, ØOPS-3, NBLES, built by Samsung H I for Drillship Skopelos Owners
OCEAN RIG POSEIDON, 59,610 gt, ØCDS, ØOPS-3, NBLES, SH-DLA, built by Samsung H I for Drillship Kithira Owners
PACIFIC MISTRAL, 60,349 gt, SH-DLA, ØCDS, ØOPS-3, NBLES, GP, built by Samsung H I for Pacific Mistral

FOIs
OPTI EX, 10,917 gt, built by Samsung H I for Omega Opti-Ex

Self-Elevating Drilling Units
HAFFAR-1, 6,982 gt, built by Maritime Industrial Services for Middle East Jackup 1
MASTER DRILLER, 7,726 gt, built by Yantai CIMC Raffles Offshore for Yantai CIMC Raffles Offshore
ROWAN EXL-III, 7,279 gt, ØCDS, built by Keppel Amfels for Rowan Companies
ROWAN EXL-IV, 7,279 gt, ØCDS, built by Keppel Amfels for Rowan Companies
SUPREME DRILLER, 7,711 gt, built by Yantai CIMC Raffles Offshore for Yantai CIMC Raffles Offshore
SWIFT 10, 7,427 gt, built by PT Nanindah Mutiara Shipyard for Swift Drilling
TERAS CONQUEST, 5,097 gt, built by Saigon Shipyard for Teras Conquest 4
TRANSOCEAN HONOR, 10,679 gt, built by PPL Shipyard for Transocean Offshore Deepwater Holdings

MISCELLANEOUS

Barges

111, 1,077 gt, built by Servicio Industrial de La Marina for Autoridad Del Canal de Panama
112, 1,077 gt, built by Servicio Industrial de La Marina for Autoridad Del Canal de Panama
6003, 3,678 gt, built by Corn Island Shipyard for Norfolk Dredging Company
6001, 1,604 gt, built by Zhenjiang Dantu Yangtse Shipyard for Samsung Ocean Development
650-10, 13,462 gt, SH, SHCM, built by VT Halter Marine for Vessel Management Services
750-1, 25,239 gt, SH, SHCM, VEC, built by VT Halter Marine for Vessel Management Services
AGUNG SAMUDERA VII, 1,657 gt, built by PT Sumatera Maju Jaya Shipyard for PT Pelayaran Agung Samudera
ALIM B-35, 3,233 gt, built by Yizheng Xinyang Shipbuilding for PT Alim Shipping
ALIM B-36, 3,233 gt, built by Yizheng Xinyang Shipbuilding for PT Alim Shipping
ALPINE, 1,051 gt, built by PT Sumatera Maju Jaya Shipyard for PT Adhi Berlian Shipping
ANAND GANGA 231, 1,468 gt, built by Tongzhou Huaya Shipbuilding for Putra Bulian Shipping & Trading
ASIAPRIDE 39,307, 15715 gt, built by Nanjing East Star Shipbuilding for Coastal Offshore
AZAMARA 8, 3,105 gt, built by Nanjing Shunxin Ships for Entebe Shipping
AZAMARA 9, 3,105 gt, built by Nanjing Shunxin Ships for Entebe Shipping
BENAMI III, 3,060 gt, built by Yangzhou Hairun Shipping for PT Andalan Lancer Niaga
BETSY ARNTZ, 2,724 gt, built by US Fab for Harley & Lela Franco Barge Fund
BIG GEM, 6,177 gt, built by Wujiang Soho Xinsheng Shipyard for Asian Shipping
BIG GRACE, 4,851 gt, built by Wujiang Soho Xinsheng Shipyard for Asian Shipping
BUKIT EMAS 213, 1,051 gt, built by PT Sumatera Maju Jaya Shipyard for PT Pelayara Sumatera Bukit Emas
CAMAR LAUT 2701, 2,140 gt, built by Yizheng Xinyang Shipbuilding for PT Pelayaran Camar Laut
CB 34, 1,724 gt, built by ES Offshore and Marine Engineering for Class 3 Shipping
CBC 1271, 2,159 gt, built by Gulf Island Fabrication for Canal Barge
CBC 1272, 2,159 gt, built by Gulf Island Fabrication for Canal Barge
CIB 723, 2,164 gt, built by C & C Marine & Repair for CIBCO Barge
CITEURUP 2, 3,147 gt, built by Poet (China) Shipbuilding & Engineering for PT Trans Wisco Marine
CMS 260, 2,194 gt, built by Halimar Shipyard for Cenac Marine Services
COM 1, 1,302 gt, Ice Class “A0”, built by Port Service for Bue Kyran
COM 2, 1,302 gt, Ice Class “A0”, built by Port Service for Topaz Marine
CREST 2501, 2,249 gt, built by Nantong Tong Sheng Shipbuilding for Radiance Offshore Navegacao

OCEAN RIG POSEIDON, a 59,610 gt drillship, CDS, OPS-3, NBLES, DLA, built by Samsung H I for Drillship Kithira Owners.

PACIFIC MISTRAL, a 60,349 gt drillship, SH-DLA, CDS, OPS-3, NBLES, GP, built by Samsung H I for Pacific Mistral.

TERAS CONQUEST, a 5,097 gt self-elevating drilling unit, built by Saigon Shipyard for Teras Conquest 4.
CREST PROVIDER, 7,996 gt, built by Nantong Tongmao Shipbuilding for Pacific Crest
DAGBASY, 14,175 gt, built by Ojsc Krasniye Barrikadi Shipyard for Malaysia Marine & Heavy Engineering
DALE FRANK JR, 4,170 gt, built by Zidell Marine for Zidell Marine
DEFIANT, 4,434 gt, built by Sterling Shipyard for Harbor Bunkering
DYNA-MAC I, 4,359 gt, built by Pally Marine & Offshore Engineering for Dyna-Mac Engineering Services
EADYRA 505, 3,147 gt, built by Taizhou Sanfu Ship Engineering for Putra Bulan Shipping & Trading
EASTERN COMET, 6,019 gt, built by Jiangsu Hongqiang Marine HI for Eastern Navigation
ENERGY 09, 2,140 gt, built by Nanjing Nanjiang Shipbuilding for PT Barokah Karya Energy
ESTRELLA DEL MAR II, 5,020 gt, built by Unithai Shipyard & Engineering for Wartsila Finland Oy Power Plants
ETI 3003, 3,147 gt, built by Nantong Tiannan Shipyard for Poet Shipbuilding & Engineering
FINACIA 90, 3,112 gt, built by Nanjing Asiapride Shipping Making for Trans-Log Supply Private
FINACIA 91, 3,112 gt, built by Nanjing Asiapride Shipping Making for Trans-Log Supply Private
FINACIA 92, 3,105 gt, built by Nanjing Ding Feng Shipbuilding for Trans-Log Supply Private
FINACIA 93, 3,105 gt, built by Nanjing Ding Feng Shipbuilding for Trans-Log Supply Private
FINACIA 95, 3,113 gt, built by Nanjing Asiapride Shipping Making for Trans-Log Supply Private
FINACIA 96, 3,113 gt, built by Nanjing Asiapride Shipping Making for Trans-Log Supply Private
FRANKLIN VICTORY, 14,138 gt, built by Nan tong Jiaolong H I Development for Franklin Victory
GLOBAL PORTLAND, 1,004 gt, built by Trinity Marine Group for Global Marine Transportation
GLOBAL SAN FRANCISCO, 1,004 gt, built by Trinity Marine Group for Global Marine Transportation
GOLD TRANS 323, 3,233 gt, built by Nanjing Asiapride Shipping Making for PT Trans Power Marine
GOLD TRANS 325, 3,233 gt, built by Nanjing Asiapride Shipping Making for PT Trans Power Marine
GSL-12, 2,405 gt, built by Yizheng Xinyang Shipbuilding for PT Pelayaran Gema Samudera Lines
GTO-2507, 2,305 gt, built by Nanjing Asiapride Shipping Making for Sinosin Sentosa
GTO-2508, 2,305 gt, built by Taixing Dongxing Shipping for Sinosin Sentosa
HERMASA 74, 1,035 gt, built by Estaleiro Rio Maguari for Hermasa Navegacao da Amazonia
HERMASA 75, 1,052 gt, built by Estaleiro Rio Amazonas for Hermasa Navegacao Da Amazonia
HERMASA 76, 1,052 gt, built by Estaleiro Rio Amazonas for Hermasa Navegacao Da Amazonia
HERMASA 77, 1,101 gt, built by Estaleiro Rio Maguari for Hermasa Navegacao da Amazonia
HERMASA 78, 1,101 gt, built by Estaleiro Rio Maguari for Hermasa Navegacao da Amazonia
HERMASA 82, 1,101 gt, built by Erin-Estaleiros Rio Negro for Hermasa Navegacao da Amazonia
HERMASA 83, 1,101 gt, built by Erin-Estaleiros Rio Negro for Hermasa Navegacao da Amazonia
HM-C, 2,308 gt, built by Estaleiro Rio Maguari for Hermasa Navegacao Da Amazonia

HAFFAR-1, a 6,982 gt self-elevating drilling unit, built by Maritime Industrial Services for Middle East Jackup 1.

HEILAN CRUISER, a 56,922 dwt bulk carrier, BC-A, AB-CM, CSR, GRAB(20), TCM, built by Shanghai Shipyard for NHG Shipping.
K. GLOBAL PRIDE, a 179,185 dwt bulk carrier, BC-A, AB-CM, CSR, GRAB(20), TCM, GP, built by Hyundai HI for Harmony Shipholding.

LAST TYCOON, a 34,604 dwt bulk carrier, BC-A, AB-CM, CSR, GRAB(20), TCM, RRDA, built by Shanhaiguan Shipbuilding Industry for Celebes Wind.

MANDARIN GRACE, a 56,693 dwt bulk carrier, BC-A, AB-CM, CSR, GRAB(20), TCM, BWE, built by Jiangsu Hantong Ship H I for Mandarin Grace Shipping.

INDOTRANS 3008, 3,071 gt, built by Nanjing Yonghua Shipbuilding for Putra Bulian Shipping & Trading

INDOTRANS 3009, 3,071 gt, built by Nantong Tongcheng Ship Manufacturing for PT Indojaya Trans Samudra

JAYA INSTALLER 10, 10,197 gt, built by Nantong Dongjiang Shipyard for JSE Shipping

KBU III, 3,129 gt, built by Nanjing Yonghua Shipbuilding for PT Kumala Barito Utara

KBU IV, 3,129 gt, built by Nanjing Yonghua Shipbuilding for PT Kumala Barito Utara

KS 10, 1,735 gt, built by Gunderson Marine for Greenbrier Leasing

LANCAR 2701, 2,261 gt, built by Nanjing Sandingli Ship Industry for PT Dharmalancar Sejahtera

LANCAR 2702, 2,261 gt, built by Nanjing Sandingli Ship Industry for PT Dharmalancar Sejahtera

LANPAN CB3, 6,019 gt, built by Nanjing Yonghua Shipbuilding for Lanpan

LINTAS SAMUDERA 65, 4,414 gt, built by Nanjing Sandingli Ship Industry for Sainty Marine Development

LINTAS SAMUDERA 66, 4,414 gt, built by Nanjing Sandingli Ship Industry for Sainty Marine Development

LINTAS SAMUDERA 69, 2,261 gt, built by Nanjing Yonghua Shipbuilding for PT Pelayaran Duta Lintas Samudera

LINTAS SAMUDERA 70, 2,261 gt, built by Nanjing Yonghua Shipbuilding for PT Pelayaran Duta Lintas Samudera

LINTAS SAMUDERA 71, 2,261 gt, built by Nanjing Ding Feng Shipbuilding for PT Pelayaran Duta Lintas Samudera

LINTAS SAMUDERA 72, 2,261 gt, built by Nanjing Ding Feng Shipbuilding for PT Pelayaran Duta Lintas Samudera

LOCAR XI, 2,420 gt, built by Estaleiro Rio Maguari for Locar Transportes Tecnicos e Guindastes

MARITIME COURAGE, 4,951 gt, built by Taizhou Xing Gang Shipbuilding for Zeus Marine

MBP 1301, 5,875 gt, built by Nanjing Yonghua Shipbuilding for Sinosin Sentosa

MBP 1302, 5,822 gt, built by Jiangsu Huatai Shipbuilding for PT Maritim Barito Perkasa

MEGA TRANS VIII, 1,351 gt, built by Taizhou Sanfu Ship Engineering for Ocean Express Marine

MERYAN 2, 2,007 gt, built by Taizhou Sanfu Ship Engineering for Tejarat Gostar Meryan

MERYAN 5, 3,142 gt, built by Taizhou Sanfu Ship Engineering for Tejarat Gostar Meryan

MEUTIA ANDALAS 8, 4,055 gt, built by PT United Sindo Perkasa for PT Pelayaran Andalas Bahtera Baruna

MHKL 35, 3,071 gt, built by Nanjing Yonghua Shipbuilding for Marine Regent

MUTAR GULF, 2,007 gt, built by Taizhou Sanfu Ship Engineering for Younes Sukan Darya Shipping

NEWCRUZ 332, 4,955 gt, built by Nanjing Nanjiang Shipbuilding for Swiber Offshore Marine

NOBEL SEA 233, 1,429 gt, built by Nantong Tongde Shipbuilding & Repairing for PT Perusahaan Pelayaran Rusianto Bersaudara

NOBEL SEA 235, 1,429 gt, built by Nantong Tongde Shipbuilding & Repairing for PT Perusahaan Pelayaran Rusianto Bersaudara

OCEAN MASTER 205, 3,724 gt, built by Jinsheng Ships Manufacturing for Ocean Master Shipping

OCEAN MASTER 206, 3,724 gt, built by Jinsheng Ships Manufacturing for Ocean Master Shipping

ORE 1, 1,186 gt, built by Estaleiro Rio Maguari for International Iron

ORE 2, 1,186 gt, built by Estaleiro Rio Maguari for International Iron

ORE 3, 1,186 gt, built by Estaleiro Rio Maguari for International Iron

ORE 5, 1,186 gt, built by Estaleiro Rio Maguari for International Iron

ORE 6, 1,186 gt, built by Estaleiro Rio Maguari for International Iron

ORE 8, 1,186 gt, built by Estaleiro Rio Maguari for International Iron
ORE 10, 1,186 gt, built by Estaleiro Rio Maguari for International Iron
ORE 11, 1,186 gt, built by Estaleiro Rio Maguari for International Iron
ORE 12, 1,186 gt, built by Estaleiro Rio Maguari for International Iron
ORE 14, 1,186 gt, built by Estaleiro Rio Maguari for International Iron
ORE 15, 1,186 gt, built by Estaleiro Rio Maguari for International Iron
ORE 19, 1,186 gt, built by Estaleiro Rio Maguari for International Iron
ORE 20, 1,186 gt, built by Estaleiro Rio Maguari for International Iron
ORE 21, 1,186 gt, built by Estaleiro Rio Maguari for International Iron
ORE 22, 1,186 gt, built by Estaleiro Rio Maguari for International Iron
ORE 23, 1,186 gt, built by Estaleiro Rio Maguari for International Iron
ORE 24, 1,186 gt, built by Estaleiro Rio Maguari for International Iron
ORE 25, 1,186 gt, built by Estaleiro Rio Maguari for International Iron
ORE 29, 1,186 gt, built by Estaleiro Rio Maguari for International Iron
ORE 30, 1,186 gt, built by Estaleiro Rio Maguari for International Iron
ORE 31, 1,186 gt, built by Estaleiro Rio Maguari for International Iron
ORE 32, 1,186 gt, built by Estaleiro Rio Maguari for International Iron
ORE 351, 27,439 gt, SH, SHCM, built by Tampa Bay Shipbuilding & Repair for OSG Ship Management
PARTA JAVA 2707, 2,133 gt, built by Yangzhou Hairun Shipping for Sinosin Sentosa
PB 3016, 3,071 gt, built by Jiangsu Huatai Shipbuilding for Putra Bulian Shipping & Trading
PB 3017, 3,071 gt, built by Jiangsu Huatai Shipbuilding for PT WHS Global Mandiri
PB 3018, 3,071 gt, built by Yangzhou Topniche Shipbuilding for Putra Bulian Shipping & Trading
PB 3019, 3,071 gt, built by Yangzhou Topniche Shipbuilding for Putra Bulian Shipping & Trading
PENN NO. 81, 6,373 gt, built by Corn Island Shipyard for Penn Maritime
PMS 201, 2,140 gt, built by Nanjing Nanjiang Shipbuilding for PT Panca Merak Samudera
PMS 202, 2,140 gt, built by Nanjing Nanjiang Shipbuilding for PT Panca Merak Samudera
RAJA AMPAT 3002, 3,071 gt, built by Nanjing Yonghua Shipbuilding for PT Trans Energy
RMN 371, 3,071 gt, built by Nanjing Yonghua Shipbuilding for Putra Bulian Shipping & Trading
RMN 372, 3,071 gt, built by Jiuwei Gan (West) for Putra Bulian Shipping & Trading
RMN 373, 3,071 gt, built by Jiangsu Huatai Shipbuilding for Putra Bulian Shipping & Trading
RMN 374, 3,071 gt, built by Jiangsu Huatai Shipbuilding for Putra Bulian Shipping & Trading
RMN 376, 3,071 gt, built by Jiangsu Huatai Shipbuilding for Putra Bulian Shipping & Trading
RMN 378, 3,071 gt, built by Jiangsu Huatai Shipbuilding for Putra Bulian Shipping & Trading
RMN 380, 3,071 gt, built by Nanjing Sandingli Ship Industry for Putra Bulian Shipping & Trading
RMN 383, 3,142 gt, built by Taizhou Sanfu Ship Engineering for Putra Bulian Shipping & Trading
RMN 384, 3,142 gt, built by Taizhou Sanfu Ship Engineering for Putra Bulian Shipping & Trading
RMN 385, 3,142 gt, built by Taizhou Sanfu Ship Engineering for Putra Bulian Shipping & Trading
RMN 386, 3,142 gt, built by Taizhou Sanfu Ship Engineering for Putra Bulian Shipping & Trading
RMN 387, 3,142 gt, built by Taizhou Sanfu Ship Engineering for Putra Bulian Shipping & Trading
RMN 388, 3,142 gt, built by Taizhou Sanfu Ship Engineering for Putra Bulian Shipping & Trading
OSOGOVO, a 30,693 dwt bulk carrier, BC-A, AB-CM, CSR, GRAB(20), Ice Class "IC", TCM, built by Shanghaiguan Shipbuilding Industry for Navigation Maritime Bulgare.
RMN 389, 3,142 gt, built by Tongzhou Sanfu Ship Engineering for Putra Bulian Shipping & Trading
RMN 390, 3,142 gt, built by Tongzhou Sanfu Ship Engineering for Putra Bulian Shipping & Trading
RMN 2712, 2,133 gt, built by Jinsheng Ships Manufacturing for Putra Bulian Shipping & Trading
RMN 2713, 2,133 gt, built by Jinsheng Ships Manufacturing for Ciesco
RMN 2714, 2,134 gt, built by Jiangsu Huatai Shipbuilding for Putra Bulian Shipping & Trading
RMN 2715, 2,134 gt, built by Jiangsu Huatai Shipbuilding for Putra Bulian Shipping & Trading
RMN 2716, 2,134 gt, built by Jiangsu Huatai Shipbuilding for Putra Bulian Shipping & Trading
RMN 2717, 2,134 gt, built by Jiangsu Huatai Shipbuilding for Putra Bulian Shipping & Trading
RMN 2718, 2,134 gt, built by Jiangsu Huatai Shipbuilding for Putra Bulian Shipping & Trading
RMN 2719, 2,134 gt, built by Jiangsu Huatai Shipbuilding for Putra Bulian Shipping & Trading
RMN 2720, 2,133 gt, built by Nantong Tong Sheng Shipbuilding for Putra Bulian Shipping & Trading
RMN 2721, 2,133 gt, built by Nantong Tong Sheng Shipbuilding for Putra Bulian Shipping & Trading
RTC 104, 7,187 gt, built by Southeastern New England Shipbuilding for Reinauer Transportation
SAMSUNG 2011, 1,604 gt, built by Zhenjiang Dantu Yangtse Shipyard for Samsung Ocean Development
SARI ANDALAS 6, 6,083 gt, built by PT United Sindo Perkasa for PT Pelayaran Andalas Bahtera Baruna
SB203, 2,962 gt, built by Jiangsu Ganghua Shipyard for Sun Paradise Shipping
SOEKAWATI-168, 3,065 gt, built by Nanjing Sandingli Ship Industry for PT Pelayaran Borneo Karya Swadiri
SOEKAWATI-206, 3,110 gt, built by Nanjing Sandingli Ship Industry for PT Pelayaran Borneo Karya Swadiri
SOEKAWATI-2703, 2,140 gt, built by Nanjing Suopu Shipbuilding for PT Pelayaran Bornea Karya Mandiri
SOEKAWATI-2708, 2,140 gt, built by Nanjing Suopu Shipbuilding for PT Pelayaran Bornea Karya Mandiri
SUPPORT 11, 2,133 gt, built by Nantong Tongbao Shipbuilding for Tanoto Shipyard
SUPPORT 12, 2,133 gt, built by Nantong Tongbao Shipbuilding for Tanoto Shipyard
TGH 3001, 3,071 gt, built by Nantong Jinjian Shipbuilding & Repairing for PT WHS Global Mandiri
TOP 11, 1,302 gt, Ice Class A0, built by Adyard Abu Dhabi for Bue Marine
TOP 14, 1,024 gt, Ice Class “A0”, built by Adyard Abu Dhabi for Bue Kyran
TRIMEGAH 1, 2,212 gt, built by Nanjing East Star Shipbuilding for PT Trimegah Bangun Persada
TRIMEGAH 2, 2,212 gt, built by Nanjing East Star Shipbuilding for PT Trimegah Bangun Persada
TRIMEGAH 3, 2,212 gt, built by Jiangsu Taixing Yuemei Shipyard for PT Trimegah Bangun Persada
VIKRANT DOLPHIN, 7,740 gt, $OPS-2, built by Shoft Shipyard for Dolphin Offshore Enterprises
VIRGO STAR 05, 1,004 gt, built by PT Canuarta Starmarine for PT Kapalindo Perkasa
WEEKS 2221, 1,337 gt, built by C & C Marine and Repair for Weeks Marine
WESTSEA 93, 6,019 gt, built by Nanjing Yonghua Shipbuilding for Lanpan
WESTSEA 95, 5,844 gt, built by Nantong Tong Sheng Shipbuilding for Pacific Crest
WESTSEA 96, 5,844 gt, built by Nantong Tong Sheng Shipbuilding for Pacific Crest

OVERSEAS MILOS, a 50,378 dwt oil and chemical tanker, VEC-L, TCM, AB-CM, BWE, CSR, GP, RES, RRDA, built by SPP Shipbuilding for Milos Product Tanker.

PHOENIX STRENGTH, a 105,400 dwt oil tanker, NBL, VEC-L, TCM, AB-CM, CSR, ENVIRO, GP, RES, RRDA, built by Hyundai H I for Phoenix Strength.

REGALICA, a 16,619 dwt bulk carrier, Ice Class “IC”, NBL, TCM, BWE, RRDA, built by Taizhou Sanfu Ship Engineering for Hermione One Maritime.
WESTSEA 97, 5,844 gt, built by Yangzhou Hairun Shipping for C & D Prosper Shipping
WINBUILD 1401, 8,191 gt, built by Jingjiang Nanyang Shipbuilding for Poet Shipbuilding & Engineering
WINBUILD 1482, 1,808 gt, built by Jiangsu Soho Marine Heavy Industry for Poet Shipbuilding & Engineering
WINBUILD 1490, 3,147 gt, built by Poet Shipbuilding & Engineering for Pacific Ocean Engineering & Trading

Government Vessels
1001, deck barge, built by Conrad Industries for US Army Corps of Engineers
1002, deck barge, built by Conrad Industries for US Army Corps of Engineers
1003, deck barge, built by Conrad Industries for US Army Corps of Engineers
9001, deck barge, 475 gt, built by Basic Marine for US Army Corps of Engineers
9002, deck barge, 475 gt, built by Basic Marine for US Army Corps of Engineers
9003, deck barge, 475 gt, built by Basic Marine for US Army Corps of Engineers
9004, deck barge, 475 gt, built by Basic Marine for US Army Corps of Engineers
9005, deck barge, 475 gt, built by Basic Marine for US Army Corps of Engineers
9006, deck barge, 475 gt, built by Basic Marine for US Army Corps of Engineers
9007, deck barge, 475 gt, built by Basic Marine for US Army Corps of Engineers
9008, deck barge, 475 gt, built by Basic Marine for US Army Corps of Engineers
9009, deck barge, 475 gt, built by Basic Marine for US Army Corps of Engineers
9010, deck barge, 475 gt, built by Basic Marine for US Army Corps of Engineers
9011, deck barge, 475 gt, built by Basic Marine for US Army Corps of Engineers
9012, deck barge, 475 gt, built by Basic Marine for US Army Corps of Engineers
9013, deck barge, 475 gt, built by Basic Marine for US Army Corps of Engineers
9014, deck barge, 475 gt, built by Basic Marine for US Army Corps of Engineers
CLINTON, tug, 132 gt, built by Patti Marine for US Army Corps of Engineers
FIRE FIGHTER II, HSC fire fighting vessel, 522 gt, Fire Fighting Capability, built by Eastern Shipbuilding for New York City Fire Dept
GRAVEL SPREADER 1101, crane barge, 503 gt, built by Basic Marine for US Army Corps of Engineers
NDTR-10, deck barge, 278 gt, built by Basic Marine for US Army Corps of Engineers
RANI ABBAKKA, HSC patrol vessel, 452 gt, built by Hindustan Shipyard for Indian Coast Guard
SAM-1201, deck barge, 168 gt, built by Basic Marine for US Army Corps of Engineers
SAM-1202, deck barge, 168 gt, built by Basic Marine for US Army Corps of Engineers
SAM-1203, deck barge, 168 gt, built by Basic Marine for US Army Corps of Engineers
SAM-1204, deck barge, 168 gt, built by Basic Marine for US Army Corps of Engineers

SANKO FRONTIER, a 74,962 dwt bulk carrier, BC-A, AB-CM, CSR, GRAB(20), TCM, built by Sasebo H I for Frontier Bulkship.

TW JIANGSU, a 93,225 dwt bulk carrier, BC-A, AB-CM, CSR, GRAB(20), TCM, PORT, built by Jiangsu New Yangzi Shipbuilding for MV TW Jiaingsu Shipping.

UMBERTO D’AMATO, a 93,263 dwt bulk carrier, BC-A, AB-CM, CSR, GRAB(20), TCM, RRDA, built by Jiangsu New Yangzi Shipbuilding for Perseveranza Spa Di Navigazione.
SAM-1205, deck barge, 168 gt, built by Basic Marine for US Army Corps of Engineers
SAM-1206, deck barge, 168 gt, built by Basic Marine for US Army Corps of Engineers
TANJUNG LUMBA-LUMBA, tug, 445 gt, built by Fujin Furin Shipbuilding for Port Dept, Ministry of Communications
YP 705, tug, 305 gt, built by C & G Boat Works for Naval Sea Systems Command
YT-806 / PUYALLUP, tug, 352 gt, built by J M Martinac Shipbuilding for Commander Navy Region NW

Tugs, Workboats and OSVs
AHT SAILOR, 1,071 gt, Fire Fighting Vessel Class 1, built by Jiangsu Wuxi Shipyard for Pacific Ocean Engineering & Trading
AHT SUPPORTER, 1,071 gt, Fire Fighting Vessel Class 1, built by Jiangsu Wuxi Shipyard for Pacific Ocean Engineering & Trading
AL-KAT, 1,234 gt, φOPS-2, built by Thoma-Sea Marine Construction for J G Marine
ALLIED JANE, 3,389 gt, φOPS-2, built by Guangzhou Haigang Shipbuilding & Shipping for Allied Support
ALMOJIL 70, 1,187 gt, built by Guangxin Shipbuilding & H I for Mohammad Al Moij
ALMOJIL 71, 1,187 gt, built by Guangxin Shipbuilding & H I for Mohammad Al Moij
ARCHON TIDE, 2,605 gt, Fire Fighting Vessel Class 1, φOPS-2, built by Yuyixin Shipbuilding for Crimson Fleet
AVIS A 5, 1,259 gt, Fire Fighting Vessel Class 1, built by Berjaya Dockyard for Petrogreen
BOURBON LIBERTY 247, 1,733 gt, Fire Fighting Vessel Class 1, φOPS-2, built by Zhejiang Shipbuilding for Bourbon PS Sasu
BOURBON LIBERTY 249, 1,733 gt, Fire Fighting Vessel Class 1, φOPS-2, built by Zhejiang Shipbuilding for Bourbon PS Sasu
BOURBON LIBERTY 251, 1,733 gt, Fire Fighting Vessel Class 1, φOPS-2, built by Zhejiang Shipbuilding for Bourbon Liberty 251
BOURBON LIBERTY 252, 1,733 gt, Fire Fighting Vessel Class 1, φOPS-2, built by Zhejiang Shipbuilding for Bourbon Liberty 252
BOURBON PHET, 1,733 gt, Fire Fighting Vessel Class 1, φOPS-2, built by Zhejiang Shipbuilding for Bourbon Supply Asia
BOUTROS TIDE, 1,476 gt, Fire Fighting Vessel Class 1, φOPS-2, built by Guangxin Shipbuilding & H I for Purple Fleet
BOYD TIDE, 2,605 gt, Fire Fighting Vessel Class 1, φOPS-2, built by Yuyxin Shipbuilding for Crimson Fleet
BRAM BAHIA, 3,606 gt, Fire Fighting Vessel Class 1, φOPS-2, built by Estaleiro Navship for Bram Offshore Transportes Marítimos
BRITOIL 70, 1,032 gt, built by PT Britoil Offshore Indonesia for Britoil Offshore Services
BRITOIL 71, 1,032 gt, built by PT Britoil Offshore Indonesia for Britoil Offshore Services
CABALLO BABIECA, 2,899 gt, Fire Fighting Vessel Class 1, φOPS-2, built by Fujin Southeast Shipyard for Posh Fleet Services
CABALLO MAYA, 12,901 gt, Fire Fighting Vessel Class 2, ES 2020, Ice Class “C0”, φOPS-3, built by Strategic Marine for Coastline Maritime
CALLAS TIDE, 1,678 gt, Fire Fighting Vessel Class 1, φOPS-1, built by Fujin Southeast Shipyard for Purple Fleet
CHAYARI TIDE, 1,476 gt, Fire Fighting Vessel Class 1, φOPS-2, built by Guangxin Shipbuilding & H I for Purple Fleet
CHRISTINA TIDE, 1,678 gt, Fire Fighting Vessel Class 1, φOPS-2, built by Guangxin Southeast Shipyard for Purple Fleet
CINDY BROWN TIDE, 2,435 gt, Fire Fighting Vessel Class 1, φOPS-1, built by Fujin Southeast Shipyard for Orange Fleet
CINDY BROWN TIDE, 2,435 gt, Fire Fighting Vessel Class 1, φOPS-2, built by Quality Shipyard for Tidewater Marine
CREST COMMANDER, 2,558 gt, Fire Fighting Vessel Class 1, built by Tongfang Jiangxin Shipbuilding for Pacific Crest
CREST MARINER 1, 2,501 gt, Fire Fighting Vessel Class 1, φOPS-2, built by Jiangsu Sunhoo Shipbuilding for Pacific Crest

CREST OLYMPUS, a 3,487 gt offshore support vessel, Fire Fighting Vessel Class 1, φOPS-2, built by PT Nanindah Mutiara Shipyard for Pacific Crest.

WELPROFIT, a 93,250 dwt bulk carrier, BC-A, PORT, TCM, GRAB(20), AB-CM, CSR, RRDA, built by Jiangsu New Yangzi Shipbuilding for Star Borealis.

CINDY BROWN TIDE, a 2,435 gt offshore support vessel, Fire Fighting Vessel Class 1, φOPS-2, built by Quality Shipyards LLC. for Tidewater Marine, L.L.C.
CREST MARINER 2, 2,501 gt, Fire Fighting Vessel Class 1, DPS-2, built by Poet Shipbuilding & Engineering for Pacific Crest
CREST OLYMPUS, 3,487 gt, Fire Fighting Vessel Class 1, DPS-2, built by PT Nanindah Mutiara Shipyard for Pacific Crest
DEEPSTIM BRASIL I, 5,914 gt, WS, DPS-2, built by North American Shipbuilding for Boat 2011 Number 1
DOMINGUE TIDE, 1,678 gt, Fire Fighting Vessel Class 1, DPS-1, built by Fujian Southeast Shipyard for Orange Fleet
DRONE BEE, 1,786 gt, DPS-2, built by Bollinger Shipyards for Bee Mar-Drone Bee
DSV AVIANNA, 3,362 gt, DPS-2, built by Guangzhou Hangtong Shipbuilding for Broron Oil and Gas
GAMMAGE TIDE, 3,601 gt, Fire Fighting Vessel Class 1, DPS-2, built by Fujian Mawei Shipbuilding for Silver Fleet
GREATSHIP VIDYA, 3,387 gt, Fire Fighting Vessel Class 1, DPS-2, built by Drydocks World for Greatship
HALAT TIDE, 2,899 gt, Fire Fighting Vessel Class 1, DPS-2, built by Fujian Southeast Shipyard for Indigo Fleet
HALUL 50, 2,575 gt, Fire Fighting Vessel Class 1, DPS-1, built by Jiangjiang Nanyang Shipbuilding for Halul Offshore Services
HALUL 51, 2,575 gt, Fire Fighting Vessel Class 1, DPS-1, built by Jiangjiang Nanyang Shipbuilding for Halul Offshore Services
HART TIDE, 3,601 gt, Fire Fighting Vessel Class 1, DPS-2, built by Fujian Mawei Shipbuilding for Tidewater Marine
JAYA CENTURION, 2,744 gt, Fire Fighting Vessel Class 1, DPS-2, built by Jaya Shipbuilding & Engineering for JSE Shipping
JAYA CORAL, 2,763 gt, Fire Fighting Vessel Class 1, DPS-2, built by PT Jaya Asiatic Shipyard for Jaya Shipbuilding & Engineering
JAYA PIONEER, 4,399 gt, DPS-2, built by PT Jaya Asiatic Shipyard for JSE Shipping
KENDAL, 2,499 gt, DPS-2, built by PT ASL Shipyard for ASL Shipyard
LAIRD TIDE, 3,601 gt, Fire Fighting Vessel Class 1, DPS-2, built by Fujian Mawei Shipbuilding for Tidewater Marine International
LAMNALCO MESITE, 1,290 gt, Fire Fighting Vessel Class 1, DPS-1, built by ABG Shipyard for Lamnalco (Sharjah)
LEGACY, 2,164 gt, built by Dakota Creek Industries for Vessel Management Services
LEWEK LYNX, 1,678 gt, Fire Fighting Vessel Class 1, DPS-1, built by Chongqing Jinlong Shipbuilding for Bovey III
LONG HAI - 02, 2,575 gt, Fire Fighting Vessel Class 1, DPS-2, built by PT ASL Shipyard for ASL Shipyard
MAGELLAN 1, 1,496 gt, Fire Fighting Vessel Class 1, built by PT Miclyn Shipbuilding & Engineering for Miclyn Express Offshore
MAGELLAN 2, 1,496 gt, Fire Fighting Vessel Class 1, built by PT Miclyn Shipbuilding & Engineering for Ticwink
MARIDIVE 704, 2,379 gt, Fire Fighting Vessel Class 1, DPS-2, built by Jiangsu Zhenjiang Shipyard for Maridive & Oil Service
MARINA STAR 35509, 2,554 gt, built by Guangzhou Panyu Lingshan Shipyard for Coastal Offshore
MARINA STAR 35510, 2,554 gt, built by Guangzhou Panyu Lingshan Shipyard for Coastal Offshore
MOSSALEM TIDE, 1,476 gt, Fire Fighting Vessel Class 1, DPS-2, built by Guangxin Shipbuilding & H I for Silver Fleet
MP PREMIER, 2,181 gt, Fire Fighting Vessel Class 1, DPS-2, built by PT Marcepolo Shipyard for PT Pelayaran Nasional Bina Buana Raya
NAUTIKA RESOLUTE, 1,495 gt, built by Sarawak Slipways for Ocean Offshore Marine
PACIFIC 9, 1,991 gt, Fire Fighting Vessel Class 1, DPS-2, built by PRM Offshore H I for Pacific Richfield Marine
PACIFIC 99, 1,991 gt, Fire Fighting Vessel Class 1, DPS-2, built by PRM Offshore H I for Pacific Richfield Marine
PACIFIC 999, 1,991 gt, Fire Fighting Vessel Class 1, DPS-2, built by PRM Offshore H I for Pacific Richfield Marine

DEEPSTIM BRASIL I, a 5,914 gt offshore support vessel, WS, DPS-2, built by North American Shipbuilding for Boat 2011 Number 1.

MAGELLAN 2, a 1,496 gt offshore support vessel, Fire Fighting Vessel Class 1, built by PT Miclyn Shipbuilding & Engineering for Ticwink.
PACIFIC PETREL, 1,329 gt, built by Qingdao Qianjin Shipyard for Swire Pacific Offshore Operations

PACIFIC PHOENIX, 1,329 gt, built by Qingdao Qianjin Shipyard for Swire Pacific Offshore Operations

PACIFIC PORPOISE, 1,329 gt, DPS-1, built by Qingdao Qianjin Shipyard for Swire Pacific Offshore Operations

PACIFIC PYTHON, 1,329 gt, DPS-1, built by Qingdao Qianjin Shipyard for Swire Pacific Offshore Operations

POSH RAPID, 2,588 gt, Fire-Fighting Vessel Class 1, ES 2020, DPS-2, built by Paxocean Engineering Zhuhai for Starling Shipping

POSH RESOLVE, 2,588 gt, Fire-Fighting Vessel Class 1, DPS-2, ES 2020, built by Paxocean Engineering Zhuhai for Starling Shipping

REDFISH 3, 2,446 gt, Fire-Fighting Vessel Class 1, DPS-2, built by Yuexin Shipbuilding for Siva Global Redfish 3

REECH TIDE, 1,678 gt, Fire-Fighting Vessel Class 1, DPS-1, built by Fujian Southeast Shipyard for Platinum Fleet

ROGELIO TIDE, 1,673 gt, Fire-Fighting Vessel Class 1, DPS-1, built by Chongqing Jinlong Shipbuilding for Purple Fleet

S.C.I.PAWAN, 2,048 gt, Fire-Fighting Vessel Class 1, DPS-2, built by Cochin Shipyard for The Shipping Corporation of India

SANKO ENERGY, 3,260 gt, Fire-Fighting Vessel Class 1, DPS-2, built by Universal Shipbuilding for Energy Offshore

SEALINK ALEXANDRIA 2, 2,441 gt, Fire-Fighting Vessel Class 1, DPS-2, built by Sealink Shipyard for Sealink

SEAWAYS 20, 1,691 gt, Fire-Fighting Vessel Class 1, Oil Recovery Capability Class 1, DPS-2, ENVIRO, GP, built by Keppel Singmarine for Seaways International

SHARK-53, 1,161 gt, built by Nanjing East Star Shipbuilding for Arabian Gulf Mechanical Services & Contracting

SHARK-55, 1,161 gt, DPS-1, built by Jiangsu Zhenjiang Shipyard for Arabian Gulf Mechanical Services & Contracting

SHARK-56, 1,161 gt, DPS-1, built by Jiangsu Zhenjiang Shipyard for Arabian Gulf Mechanical Services & Contracting

SK DEEP SEA, 3,719 gt, DPS-2, built by Nam Cheong Dockyard for Nam Cheong Dockyard

SK LINE 43, 1,706 gt, Fire-Fighting Vessel Class 1, DPS-1, built by Nam Cheong Dockyard for Nam Cheong Dockyard

SK LINE 63, 1,706 gt, Fire-Fighting Vessel Class 1, DPS-1, built by Fujian Crown Ocean Shipbuilding Industry for Nam Cheong International

SPOONER TIDE, 1,678 gt, Fire-Fighting Vessel Class 1, DPS-1, built by Fujian Southeast Shipyard for Orange Fleet

STANFORD BUZZARD, 3,601 gt, Fire-Fighting Vessel Class 1, DPS-2, built by Fujian Mawei Shipbuilding for Stanford Buzzard

STANFORD GOSHAWK, 1,399 gt, Fire-Fighting Vessel Class 1, DPS-1, built by Fujian Mawei Shipbuilding for Stanford Goshawk

STANFORD HUDHUD, 1,399 gt, Fire-Fighting Vessel Class 1, DPS-1, built by Fujian Mawei Shipbuilding for Stanford Hudhud

STEPHEN WALLACE DICK, 3,601 gt, Fire-Fighting Vessel Class 1, DPS-2, built by Fujian Mawei Shipbuilding for Tidewater Marine

TERAS NAVIGATOR, 10,835 gt, DPS-1, built by CCCC Bomses Marine Industry for Teras Wallaby

TOPAZ KARZAKKAN, 1,678 gt, Fire-Fighting Vessel Class 1, DPS-1, built by Fujian Southeast Shipyard for Topaz Karzakkan

VARADA QUEEN, 1,291 gt, Fire-Fighting Vessel Class 1, DPS-1, built by ABG Shipyard for Global Bulk Carriers

VISION, 1,052 gt, built by VT Halter Marine for Vessel Management Services

VOS APOLLO, 1,678 gt, Fire-Fighting Vessel Class 1, DPS-1, built by Fujian Southeast Shipyard for Offshore Support Vessels 16

VOS ARES, 1,678 gt, Fire-Fighting Vessel Class 1, DPS-1, built by Fujian Southeast Shipyard for Offshore Support Vessels

VOS ARTEMIS, 1,678 gt, Fire-Fighting Vessel Class 1, DPS-1, built by Fujian Southeast Shipyard for Offshore Support Vessels

GLOBAL 1201, a 32,879 gt cable and pipe laying vessel, DPS-2, built by Keppel Singmarine for Keppel Singmarine.
VOS ATHENA, 1,678 gt, Fire Fighting Vessel Class 1, *DPS*-1, built by Fujian Southeast Shipyard for Offshore Support Vessels
VOS THEMIS, 1,678 gt, Fire Fighting Vessel Class 1, *DPS*-1, built by Fujian Southeast Shipyard for Offshore Support Vessels
VOS TRITON, 1,678 gt, Fire Fighting Vessel Class 1, *DPS*-1, built by Fujian Southeast Shipyard for Offshore Support Vessels
WARD TIDE, 1,674 gt, Fire Fighting Vessel Class 1, *DPS*-1, built by Fujian Southeast Shipyard for Platinum Fleet
ZAMIL 63, 2,276 gt, Fire Fighting Vessel Class 1, *DPS*-2, built by Zamil Offshore Services for Zamil Offshore Services

Yachts
ALEXANDER AGAIN, 540 gt, built by Mondo Marine for Alexander Holding
AURELIA, 245 gt, built by Heesen Yacht Builders for Selsea Ventures
CLAN VIII, 324 gt, built by Perini Navi for Sea Dolphin
DOMANI, 299 gt, built by Azimut-Benetti for Inves Sea
ELSEA, 343 gt, built by Italyachts for Insurlat Alliance
FALCON, 491 gt, built by Trinity Yachts for Ali Mubarak Al Soori
GEOSAND, 419 gt, built by Cantieri Navali Baglietto for Consolidation Leasing
ICE ANGEL, 496 gt, built by Heesen Yacht Builders for Waterline
LEGACY, 492 gt, built by Westport Shipyard for DV Marine International
LYANA, 1,008 gt, built by Azimut - Benetti for Oleania Charters
PRIMA, 838 gt, built by Palumbo for Bright Line Marine
REVE D’OR, 499 gt, built by San Lorenzo for Unicredit Leasing
SILVERLINING, 120 gt, built by Phithak Shipyard and Services for Eastrend
TUTTO LE MARRANE, 422 gt, built by Leopard Yachts for Indigo Marine Ventures
WABI-SABI, 492 gt, built by Westport Shipyard for Tanha

Others
BORNEO 2, HSC crew boat, 238 gt, built by Strategic Marine for JCB Oil Services and Gas Services
BORNEO III, HSC crew boat, 238 gt, built by Strategic Marine for JCB Oil & Gas Services
FAST GIANT, HSC crew boat, 449 gt, *DPS*-2, built by Breaux Bros Enterprises for Nautical Solutions
FAST GOLIATH, HSC crew boat, 449 gt, *DPS*-2, built by Breaux Bros Enterprises for Nautical Solutions
FAST MAMMOTH, HSC crew boat, 449 gt, *DPS*-2, built by Breaux Bros Enterprises for Nautical Solutions
GLOBAL 1201, cable & pipe laying vessel, 32,879 gt, *DPS*-2, built by Keppel Singmarine for Keppel Singmarine
HALLIN MARINE SATURATION SYSTEM (HMS-SAT-07), saturation diving system, built by Hallin Corporate Services for Ullswater Subsea
MS YVONNE, HSC crew boat, 341 gt, built by Breaux Bay Craft for Gulf Offshore Logistics
OISS PATROLLER II, HSC crew boat, 251 gt, built by Strategic Marine for Oil International Supply Services
R.J. COCO MCCALL, HSC crew boat, 496 gt, *DPS*-2, built by Gulf Craft for Seacor Marine
RIG RUNNER, HSC crew boat, 338 gt, built by Breaux Bros Enterprises for St. Bernard Boat Rental
SANSÃO, floating dry dock, 5,856 gt, built by Estaleiro Navship for Estaleiro Navship
SDS-11, saturation diving system, built by Hallin Manufacturing Services for HM2
SEIFYR, fishing vessel, 1,321 gt, built by Bonny Fair Development for CPT Empresas Maritimas
SIEM CAETES, HSC crew boat, 492 gt, ABCU, built by Inace Industria Naval do Ceara for DSND Consub

ZAMIL 63, a 2,276 gt offshore support vessel, Fire Fighting Vessel Class 1, *DPS*-2, built by Zamil Offshore Services for Zamil Offshore Services.

RIG RUNNER, a 338 gt high speed craft crew boat, built by Breaux Bros Enterprises for St. Bernard Boat Rental.
Recent Class Contracts

TANKERS
- Four 80,000 gt / 154,000 dwt at Samsung H I
- Two 160,782 gt / 362,610 dwt for Ocean Tankers at Shanghai Jiangnan-Changxing Shipbuilding
- Two 160,500 gt / 318,451 dwt at Hyundai H I
- Two 30,000 gt / 51,772 dwt for Arigento Shipping at SPP Shipbuilding
- Two 2,800 gt / 3,500 dwt for MK Marine at Fujian Changxing Shipbuilding Industry
- Two 720 gt / 700 dwt for Ocean Tankers at Ocean Leader Shipbuilding
- One 177,000 gt / 319,000 dwt for Mainerva Marine at Shanghai Waigaoqiao Shipbuilding
- One 166,400 gt / 320,000 dwt for Gulf Navigation Holding at Jinhai H I
- One 45,000 gt / 75,000 dwt at Sungdong Shipbuilding & Marine Engineering

BULK CARRIERS
- Six 51,800 gt / 69,300 dwt for Nova Shipping & Logistics at Jiangsu New Yangzi Shipbuilding
- Four 23,000 gt / 34,979 dwt for Ciner Gemi Acentei Isletmeleri Sanayi Ve Ticaret at SPP Shipbuilding
- Three 20,000 gt / 30,000 dwt at Tsuji H I
- Two 91,000 gt / 176,000 dwt for Cardiff Marine at Shanghai Jiangnan-Changxing Shipbuilding
- Two 45,054 gt / 82,000 dwt at Jiangsu New Yangzi Shipbuilding
- Two 43,000 gt / 80,000 dwt for Yang Ming Marine Transport at Universal Shipbuilding
- Two 41,400 gt / 76,900 dwt at Oshima Shipbuilding
- Two 24,850 gt / 35,000 dwt at Tsuji H I
- Two 22,800 gt / 37,000 dwt for Daiichi Chuo Kisen Kaisha at Saiki H I
- One 50,000 gt / 82,000 dwt at Zhoushan Jinhaiwan Shipyard
- One 40,600 gt / 74,585 dwt for Mi-Das Line at Sasebo H I
- One 32,100 gt / 55,693 dwt for Toyo Shipping Line at IHI Marine United
- One 22,800 gt / 37,000 dwt at Saiki H I
- One 22,800 gt / 37,000 dwt for Sumitomo at Saiki H I
- One 21,000 gt / 34,000 dwt for Ionic Hawk at Dae Sun Shipbuilding & Engineering

CONTAINERSHIPS
- One 6,700 teu at Hyundai Samho H I

GAS CARRIERS
- Two 82,000 m³ at Hyundai H I

OFFSHORE

Drillships
- Two 51,500 gt / 34,000 dwt for Rowan Companies at Hyundai H I

Self-Elevating Drilling Units
- Two 5,000 gt / 7,000 dwt at China Merchants H I
- Two 5,000 gt / 7,000 dwt at COSCO Nantong Shipyard
- Two 5,000 gt / 7,000 dwt at Shanghai Waigaoqiao Shipbuilding

Single Point Moorings
- Two for Indian Oil at SBM Atlantia
- One at PT Profab Indonesia
MISCELLANEOUS

Barges
Eight 5,000 gt at Jiangsu Hongqiang Marine H I
Four 2,000 gt at Nantong Tongbao Shipbuilding
Three 6,000 gt for PT Pelayaran Kapuas at Nantong Tong Sheng Shipbuilding
Three 3,500 gt for Ciesco at Nantong Tong Sheng Shipbuilding
Three 3,000 gt for Ezion Maritime at Nantong Tongshun Shipyard
Three 1,356 gt for Anhui Jantle Marine Engineering at Nantong Tongde Shipbuilding & Repairing
Two 7,000 gt at Tongzhou Huaya Shipbuilding
Two 6,000 gt for Poet Shipbuilding & Engineering at Nantong Tianshan Shipyard
Two 4,560 gt at Nantong Tianshan Shipyard
Two 4,500 gt at Nantong JinJian Shipbuilding & Repairing
Two 3,000 gt at Nantong Tongde Shipbuilding & Repairing
Two 2,200 gt for PT Perusahaan Pelayaran Rusianto Bersaudara at Nantong Tongde Shipbuilding & Repairing
Two 2,000 gt for Sinoway International at Nantong Jinjiai Shipbuilding & Repairing
Two 1,600 gt at Nantong Tongde Shipbuilding & Repairing
One 18,150 gt at COSCO (Zhoushan) Shipyard
One 3,500 gt for PT Pelayaran Kapuas at Nantong Tong Sheng Shipbuilding
One 3,000 gt at Nantong Tongde Shipbuilding & Repairing
One 2,800 gt at Jingjiang Nanyang Shipbuilding
One 2,000 gt for Putra Bulian Shipping & Trading at Nantong Tongbao Shipbuilding
One 1,600 gt for PT Alim Shipping at Nantong Tongbao Shipbuilding
One 1,500 gt at COSCO (Zhoushan) Shipyard

Government Vessels
One special purpose vessel, 1,500 gt for US Navy at Austal USA

Tugs, Workboats and OSVs
Six 1,678 gt for Coastal Offshore at Fujian Southeast Shipyard
Five 1,720 gt for Bourbon Supply Investissements at Zhejiang Shipbuilding
Two 3,497 gt for Poet Shipbuilding & Engineering at Jingjiang Nanyang Shipbuilding
Two 3,000 gt at Fujian Mawei Shipbuilding
Two 2,200 gt for Gulf Offshore at Rosetti Marino
Two 2,200 gt for Tidewater Marine at Yuexin Shipbuilding
Two 1,678 gt at Guangxin Shipbuilding & H I
Two 1,250 gt for JM Marine at Zhongshan Hunghao Shipyard
Two 1,200 gt for Metico Marketing at Jiangsu Suyang Marine
One 3,000 gt for Marnavi SPA at Selah Makine Ve Endustri Tic. A.S.
One 1,678 gt at Fujian Crown Ocean Shipbuilding Industries

Yachts
Five 500 gt at Azimut-Benetti
Two 500 gt at Perini Navi
One 500 gt at CRN Spa
One 495 gt at Heesen Yacht Builders
One 325 gt at Heesen Yacht Builders

Others
Six general cargo carriers, 51,800 gt, for Nova Shipping & Logistics at Nantong Mingde H I
Four general cargo carriers, 5,200 gt, for Pacific Ocean Engineering & Trading at Nantong Tongde Shipbuilding & Repairing
Two high speed craft, 499 gt, for Seacor Marine at Gulf Craft
One underwater system at Drass Engineering
One general cargo carrier, 800 gt, for Sesa Goa at Chengxi Shipyard
One heavy lift ship, 16,808 gt, for Asian Lift at Keppel Nantong Shipyard
One underwater system for Sogenai Spa at Sogenai Spa

PV DRILLING V, a 15,424 gt column stabilized drilling unit, built by Keppel Fels for PVD Deepwater Drilling.

We Welcome Your Thoughts

Activities is intended to provide our members and clients with ABS views, news and research. Editorial content is gathered from ABS engineering and field offices around the globe.

To comment, please contact Jean Gould, Vice President, External Affairs, at tel: 1-281-877-5850 or email CorporateCommunications@eagle.org.

The mission of ABS is to serve the public interest as well as the needs of our clients by promoting the security of life, property and the natural environment primarily through the development and verification of standards for the design, construction and operational maintenance of marine-related facilities.

ON THE COVER

The TRANSOCEAN HONOR, a 10,679 gt self-elevating drilling units, was built by PPL Shipyard in Singapore for Transocean Offshore Deepwater Holdings. Photo courtesy of Transocean, photographer Ken Childress.