MESSAGE FROM THE CEO

Investing in the Future

There is little doubt that our world is rapidly changing. Technologies viewed as cutting-edge in both the marine and offshore industry just five years ago are in some cases obsolete today. At the same time, owners and operators find themselves having to create new and innovative ways to address the rapidly changing regulatory environment. ABS recognizes these industry challenges and is focused on being ahead of the technology curve with the objective of striking a balance between innovation and safety.

Today, ABS Technology is forging ahead with research and development (R&D) projects, joint industry programs, and academic research efforts to help identify practical solutions to some of industry’s most pressing challenges. Powered by our Corporate Technology team and five regional Technology Centers in operation around the world, the ABS Ecosystem of Innovation is driving more than 200 research projects that directly support marine and offshore operations.

Recently, the President of the United States Barack Obama announced the funding of an industrial and academic consortium that will focus on the development and manufacturing of lightweight and modern metals and materials. ABS is a member of the consortium as efforts are undertaken to speed the time to market for novel concepts, designs, and processes. The potential benefit for the development of lighter weight materials for use in the marine and offshore industries is tremendous, and ABS has a seat at the table.

Impressive as this effort is, it is just one of many projects under way. Through direct funding of academic institutions and support for our own innovative researchers, ABS is working on a number of strategic initiatives in 2014. In the offshore energy industry we are undertaking computational fluid dynamic (CFD) verification for impulse loading caused by severe waves, studying the life extension of floating production, storage and offloading (FPSO) units, developing standards for harsh weather offshore support vessels (OSVs), and establishing guidance for structural analysis of ice-resistant jackups.

Our efforts on the marine side are just as forward leaning. ABS researchers are evaluating the potential for nanotechnology to create icephobic surfaces, developing in-depth standards for bunkering LNG fuel, tackling challenges related to environmental compliance, and improving CFD capabilities to support industry’s development of efficient hull forms.

What has always sustained ABS is pioneer thinking. We are proud of the many ‘firsts’ that have been achieved on ABS-classed assets. We have established a reputation that ABS is best positioned to assist industry with new and novel concepts. We are still in the vanguard, committed to preserving our leadership position through innovative approaches to achieving safety, quality and compliance without sacrificing productivity.

No one ever got ahead by standing on the sidelines. That is why ABS has always been in the thick of development, working with industry to identify the roadblocks that stand in the way of progress and helping find ways to remove them. We recognize that maintaining the status quo is of little value to our members and clients and certainly will not get them where they want to go. Our goal is to lead by example and to move with industry into new frontiers.

ABS set the bar for class services, and we are committed to continuing to raise it.
ABS Establishes Energy Corridor Office

ABS has opened a new Houston office to house the offshore and energy functions. The move to a new building in the expanding Energy Corridor in West Houston not only places ABS engineers in close proximity to major clients, it positions ABS in a dynamic research and development environment.

The new facility co-locates members from ABS Engineering, Project Management, Technology and Business Development, which will improve internal collaboration and allow ABS to better serve its client base in the area.

“ABS recognizes that our customer base in the offshore industry demands onsite support with best-in-class services,” says ABS Chairman, President and CEO Christopher J. Wiernicki. “ABS made the strategic decision to provide greater access to our offshore clients by locating ABS’ industry-focused resources in a dedicated facility in one of the world’s most important energy centers. This move reinforces our commitment to supporting Houston’s leading energy industry.”

In addition to class services, ABS’ West Houston facility will offer education and training seminar rooms for local industry to use on demand. The objective is to provide a forum with access to in-house resources that fosters knowledge-based partnerships and information sharing among operators, service providers, academia and regulatory bodies.

Making ABS more easily accessible to clients by co-locating its offshore and energy project teams places ABS in a position to offer even better support, says ABS Executive Vice President, Energy Development Kenneth Richardson.

“Our Energy Corridor office will serve as a meeting place for key decision-makers to collaborate on shaping guidelines and solutions for demanding applications such as harsh environments, subsea electrification and global gas solutions,” Richardson says.

The facility opened in February 2014, and a client reception is planned for April 2014.
To a mission-driven organization like ABS, health and safety in the workplace are as important as the safety services it provides to clients. It goes without saying that to deliver on the business of safety requires an internal culture that is understood and followed by all employees.

When an independent survey of the ABS safety culture was carried out during 2011, the results identified good existing awareness and safety practices that could be leveraged, provided that greater attention would be paid to safety awareness, communication and employee engagement.

For Manuel Castro, ABS Occupational, Health and Safety (OHS) Director, it was the beginning of a three-year program that achieved a significant milestone in late 2013 with the award of OHSAS 18001:2007 certification, an internationally recognized standard covering the specifications of an occupational health and safety management system.

“We aim in targeting certification was to strengthen our safety structure and be recognized globally as a safety leader. We also recognized that this was a system used by our clients, one that incorporates hazard identification, risk assessment and job safety analysis,” he explains.

The internal safety campaign that followed the 2011 audit targeted improvements to specific procedures as well as a comprehensive revision of the ABS Health and Safety Manual. Divisional safety improvement teams were founded and a safety briefings program implemented, along with the ABS employee incident reporting system.

A second independent global survey in 2012 showed ABS had achieved a strong position in health and safety matters and that its health and safety management system was well established, though a few areas for improvement remained.

Near miss reporting, meanwhile, had continued to rise, reaching 545 reports in 2013. This growth in reporting was considered positive since an increased number of near misses meant a lower number of injuries. ABS accomplished its 2012 targeted lost-time incident index (LTII) reduction of 50 percent to 0.14. By 2013, the LTII had decreased to 0.07 percent.

Recognizing that increased awareness was the key to improving safety, the organization established a worldwide ABS Safety Day in 2012 as an annual event and created the Golden Eagle award to recognize employees who exhibit exemplary dedication to the ABS safety culture.

Since the very beginning of the safety management system implementation, ABS had considered bringing system certification under a recognized accreditation program. At the beginning of 2013, the ABS Health and Safety Committee instructed the OHS department to proceed with certification to OHSAS 18001.

The process to obtain OHSAS certification began in March 2013 with a gap analysis of the ABS Health and Safety Management System, which found that while there were areas that needed improvement, ABS was voluntarily ahead of many requirements addressed by the standard.

Inspection agency SGS carried out 17 audits between September and October 2013, granting certification to ABS by year-end 2013.

Castro is quick to stress that this is not the end of the internal safety drive. Certification requires ABS to maintain its standards of excellence through compliance with internal and surveillance audits by SGS.

The recent merging of the OHS department with the Health, Safety, Quality and Environment (HSQE) department under Adam Moilanen, ABS Vice President, HSQE, will make possible the integration of resources and compliance with internal audits in the near future.

“The safety improvement team program, in particular, has proven so effective during the last two years that it will be prolonged for at least another year, with the main objectives of focusing on ABS employee safety in the office and in the field,” Moilanen says. “We will also concentrate more on workplaces and facilities where employees carry out their daily jobs.” ABS employees will be encouraged to participate with feedback on ABS safety activities.

“We can all feel very proud of what has been achieved in the last three years in creating the ABS Health and Safety Management System,” he says. Achieving OHSAS certification gives us a sound platform for continuing improvement.”

OHSAS Recognizes ABS Safety Culture
ABS Names Chief Scientist for CFD

Technology advancement is critical in today’s rapidly changing operating environment in both the offshore and marine industries. New ideas and new ways of applying established technologies will pave the way forward. Computational fluid dynamics (CFD) is an established technology that is changing the way engineering challenges are addressed in both industries.

“While ABS has had CFD capabilities for many years, advancements in solvers and computing power coupled with analysis demands ranging from eco-hull forms to deepwater risers and offshore wind have brought this technology to the fore,” says ABS Chief Technology Officer Todd Grove.

Recognition of the potential value of CFD solutions led ABS to hire Richard Korpus as Chief Scientist. Korpus, who holds multiple engineering degrees from the University of Michigan including a Bachelor of Science (BS) and Master of Science (MS) in Aerospace Engineering and a BS, MS and PhD in Naval Architecture and Marine Engineering – has taught engineering and naval architecture courses at the university level. His theoretical training includes a broad background in applied and numerical mathematics; development of finite volume, difference and element methods; optimization and variational methods; and boundary integral techniques.

“Having a Chief Scientist for CFD allows ABS to bring advanced technologies forward to develop solutions to meet industry demands,” Grove says.

As the Chief Scientist for CFD, Korpus is the corporate technical authority on CFD applications for marine and offshore. He will oversee CFD policy, procedures, long-range planning, tools, capabilities and services. And he will play a vital role in making sure ABS continues to provide technology capabilities to support industry needs.

Creating the Chief Scientist position in the Technology department at the ABS world headquarters in Houston is the most recent step in the continuing process of technology investment at ABS. Earlier in 2013, ABS’ Operational and Environmental Performance (OEP) team began offering industry services in support of asset optimization. The primary concerns of the OEP group are assessing the energy efficiency of new designs and optimizing retrofits. CFD is an essential tool in providing these support services to industry. Korpus is teaming with OEP’s specialists to develop highly efficient CFD modeling and optimization procedures that use both industry standard and proprietary codes.

The creation of this new position is timely, says Korpus. “CFD has finally become a mature tool. The challenge from here forward is to capitalize on this technology to the best advantage and thereby grow our service offerings. I’m excited to be part of this process and help ABS maintain its competitive edge.”

Korpus is recognized for his strong technical capabilities, outstanding breadth and depth of experience and for his contributions in the field of CFD. He will play an important role in helping ABS maintain its position as an innovative technology leader.

“CFD has the potential to change how the most challenging problems will be solved in the future,” Korpus says. “This organization has a reputation as an industry leader, and I am looking forward to helping ABS position itself to bring advanced CFD technology into the very heart of its marine assessment and classification business areas.”
ABS is the leading provider of classification services to the global offshore industry, certifying the largest share of floating production installations worldwide. Acknowledged by the industry as a technology leader in the offshore and energy markets, ABS was selected to class and serve as the Certified Verification Agent (CVA) for Chevron Corp.’s Jack St. Malo semisubmersible floating production unit (FPU).

In November 2013, ABS Principal Engineer, Project Development Sharon Garcia and the ABS “JSM” team proudly watched as the Jack St. Malo FPU set sail from the Kiewit Offshore Services integration yard in Ingleside, Texas, on its way to Walker Ridge 718 in the deepwater Gulf of Mexico (GOM), where it will be stationed in 7,000 ft (2,134 m) water depth for 30 years.

According to Garcia, the success of the project – from ABS support during front end engineering design (FEED), to hull and topsides fabrication and integration through to project completion and scheduled sailaway – was the culmination of several years of hard work.

Beginning in 2009, ABS’ initial scope of work called for approval of the FEED to validate that the FPU design complied with the intent of ABS Rules and appropriate codes. Following FEED approvals, ABS proceeded to the classification and statutory approvals and fabrication and installation surveys. The Jack St. Malo FPU will receive the floating offshore installation (FOI) notation under ABS class.

The Jack St. Malo project comprises the joint development of the Jack and St. Malo oil fields, which are part of the emerging Lower Tertiary Trend deposited 65 million years ago more than 20,000 ft (609 m) beneath the seabed. Chevron as operator discovered the St. Malo oil field in 2003 on Walker Ridge Block 678 in 2,100 ft (640 m) water depth.

The Jack oil field was discovered the following year on Walker Ridge Blocks 758 and 759 in ultra deep water.

Chevron and its partners are developing the Jack and St. Malo fields in phases. The $7.5 billion development will consist of three subsea centers tied back to the hub production facility with a capacity of 170,000 barrels of oil and 42.5 million cubic feet of natural gas per day.

In February 2013, the Jack St. Malo hull departed Geoje, South Korea, aboard the Dockwise Vanguard heavy transport vessel on its maiden voyage to the Kiewit yard in Ingleside, where the FPU topside modules were being constructed. At 56,000 metric tons, the Jack St. Malo hull is the world’s largest to date, and its float-on operation proved the Vanguard’s heavy transport capability across 13,000 nautical miles.

A project of this magnitude is a multinational effort, requiring vision, teamwork and effective communication and coordination among clients, vendors and regulatory bodies. Garcia, who credits her client relationship and team as the cornerstone, manages the Jack St. Malo FPU project on behalf of ABS. Garcia is the client’s point of contact for issues related to all project phases, including ABS classification, Bureau of Safety and Environmental Enforcement (BSEE) CVA and US Coast Guard (USCG) approvals.

Project management requires a specialized skillset and a familiarity with many areas of the industry. It also requires an understanding of when to rely on the judgment of others with different skills, knowledge and technical expertise. According to Garcia, best-in-class services begin with developing
positive relationships and mutual respect among collaborators. “Building a cohesive team with this shared commitment inspires confidence and empowers team members to excel in their respective roles,” she says.

Providing consistent leadership, guidance and motivation while continually prioritizing competing responsibilities to meet client and project demands is essential to project management. “Measuring my success as a project manager is personal and reflects the goals and expectations I set for myself professionally.”

To meet (and exceed) client expectations, Garcia implemented a creative approach to the monthly Regulatory Affairs team meetings with JSM project stakeholders. Recognizing these meetings as a critical component to project success, Garcia focused on ways to effectively engage all parties involved to address outstanding review issues with the client and designers.

With an emphasis on collaboration, she transformed ABS’ regular monthly client status meetings into an action-packed productive meeting by introducing the revolving attendance of various engineering disciplines. This positive personal interaction among client, designer and the ABS JSM project team was well received by the client and engineering designers, she says, adding that teamwork was the foundation of project success.

Deepwater Megaprojects

Chevron selected ABS to deliver project planning and advice including FEED support in 2009 and subsequently to class and serve as CVA for the Jack St. Malo semisubmersible and Big Foot extended tension leg projects, in a combined $12 billion investment to launch these two deepwater platforms.

ABS classed and served as the design, fabrication and installation CVA for the Chevron-operated Blind Faith semisubmersible (2005-2008) and the Chevron Tahiti truss spar (2004-2009), both major assets in the deepwater GOM.

“These kinds of massive projects demand an integrated approach to understanding the project as a whole. As an independent party working closely with the USCG and industry, we were able to share our experience across the disciplines to facilitate more productive discussions,” says Garcia.

Organization, teamwork and delivery are what Chevron has come to expect from ABS over the years. The organization is classing and certifying the design, fabrication and installation of two of Chevron’s other megaprojects under way in the GOM, the $4.1 billion Big Foot TLP and the Williams-operated Tubular Bells spar. Garcia also is ABS Project Manager for Big Foot and point person for the Blind Faith and Tahiti modification projects. She liaises regularly with the client to ensure team focus and performance are consistent with project requirements.

“It takes the dedication and contribution of many to create this kind of success,” Garcia reiterates about Jack St. Malo. “ABS is proud to be a part of Chevron’s projects, and we look forward to continuing to serve our client’s deepwater service demands.”

The offshore installation campaign is now mobilized, with first oil anticipated in 2014.

Deepwater Megaprojects

Chevron selected ABS to deliver project planning and advice including FEED support in 2009 and subsequently to class and serve as CVA for the Jack St. Malo semisubmersible and Big Foot extended tension leg projects, in a combined $12 billion investment to launch these two deepwater platforms.

ABS classed and served as the design, fabrication and installation CVA for the Chevron-operated Blind Faith semisubmersible (2005-2008) and the Chevron Tahiti truss spar (2004-2009), both major assets in the deepwater GOM.

“Building a cohesive team with this shared commitment inspires confidence and empowers team members to excel in their respective roles,” she says.

Providing consistent leadership, guidance and motivation while continually prioritizing competing responsibilities to meet client and project demands is essential to project management. “Measuring my success as a project manager is personal and reflects the goals and expectations I set for myself professionally.”

To meet (and exceed) client expectations, Garcia implemented a creative approach to the monthly Regulatory Affairs team meetings with JSM project stakeholders. Recognizing these meetings as a critical component to project success, Garcia focused on ways to effectively engage all parties involved to address outstanding review issues with the client and designers.

With an emphasis on collaboration, she transformed ABS’ regular monthly client status meetings into an action-packed productive meeting by introducing the revolving attendance of various engineering disciplines. This positive personal interaction among client, designer and the ABS JSM project team was well received by the client and engineering designers, she says, adding that teamwork was the foundation of project success.

Deepwater Megaprojects

Chevron selected ABS to deliver project planning and advice including FEED support in 2009 and subsequently to class and serve as CVA for the Jack St. Malo semisubmersible and Big Foot extended tension leg projects, in a combined $12 billion investment to launch these two deepwater platforms.

ABS classed and served as the design, fabrication and installation CVA for the Chevron-operated Blind Faith semisubmersible (2005-2008) and the Chevron Tahiti truss spar (2004-2009), both major assets in the deepwater GOM.

“Building a cohesive team with this shared commitment inspires confidence and empowers team members to excel in their respective roles,” she says.

Providing consistent leadership, guidance and motivation while continually prioritizing competing responsibilities to meet client and project demands is essential to project management. “Measuring my success as a project manager is personal and reflects the goals and expectations I set for myself professionally.”

To meet (and exceed) client expectations, Garcia implemented a creative approach to the monthly Regulatory Affairs team meetings with JSM project stakeholders. Recognizing these meetings as a critical component to project success, Garcia focused on ways to effectively engage all parties involved to address outstanding review issues with the client and designers.

With an emphasis on collaboration, she transformed ABS’ regular monthly client status meetings into an action-packed productive meeting by introducing the revolving attendance of various engineering disciplines. This positive personal interaction among client, designer and the ABS JSM project team was well received by the client and engineering designers, she says, adding that teamwork was the foundation of project success.

Deepwater Megaprojects

Chevron selected ABS to deliver project planning and advice including FEED support in 2009 and subsequently to class and serve as CVA for the Jack St. Malo semisubmersible and Big Foot extended tension leg projects, in a combined $12 billion investment to launch these two deepwater platforms.

ABS classed and served as the design, fabrication and installation CVA for the Chevron-operated Blind Faith semisubmersible (2005-2008) and the Chevron Tahiti truss spar (2004-2009), both major assets in the deepwater GOM.

“Building a cohesive team with this shared commitment inspires confidence and empowers team members to excel in their respective roles,” she says.

Providing consistent leadership, guidance and motivation while continually prioritizing competing responsibilities to meet client and project demands is essential to project management. “Measuring my success as a project manager is personal and reflects the goals and expectations I set for myself professionally.”

To meet (and exceed) client expectations, Garcia implemented a creative approach to the monthly Regulatory Affairs team meetings with JSM project stakeholders. Recognizing these meetings as a critical component to project success, Garcia focused on ways to effectively engage all parties involved to address outstanding review issues with the client and designers.

With an emphasis on collaboration, she transformed ABS’ regular monthly client status meetings into an action-packed productive meeting by introducing the revolving attendance of various engineering disciplines. This positive personal interaction among client, designer and the ABS JSM project team was well received by the client and engineering designers, she says, adding that teamwork was the foundation of project success.

Deepwater Megaprojects

Chevron selected ABS to deliver project planning and advice including FEED support in 2009 and subsequently to class and serve as CVA for the Jack St. Malo semisubmersible and Big Foot extended tension leg projects, in a combined $12 billion investment to launch these two deepwater platforms.

ABS classed and served as the design, fabrication and installation CVA for the Chevron-operated Blind Faith semisubmersible (2005-2008) and the Chevron Tahiti truss spar (2004-2009), both major assets in the deepwater GOM.

“Building a cohesive team with this shared commitment inspires confidence and empowers team members to excel in their respective roles,” she says.

Providing consistent leadership, guidance and motivation while continually prioritizing competing responsibilities to meet client and project demands is essential to project management. “Measuring my success as a project manager is personal and reflects the goals and expectations I set for myself professionally.”

To meet (and exceed) client expectations, Garcia implemented a creative approach to the monthly Regulatory Affairs team meetings with JSM project stakeholders. Recognizing these meetings as a critical component to project success, Garcia focused on ways to effectively engage all parties involved to address outstanding review issues with the client and designers.

With an emphasis on collaboration, she transformed ABS’ regular monthly client status meetings into an action-packed productive meeting by introducing the revolving attendance of various engineering disciplines. This positive personal interaction among client, designer and the ABS JSM project team was well received by the client and engineering designers, she says, adding that teamwork was the foundation of project success.

Deepwater Megaprojects

Chevron selected ABS to deliver project planning and advice including FEED support in 2009 and subsequently to class and serve as CVA for the Jack St. Malo semisubmersible and Big Foot extended tension leg projects, in a combined $12 billion investment to launch these two deepwater platforms.

ABS classed and served as the design, fabrication and installation CVA for the Chevron-operated Blind Faith semisubmersible (2005-2008) and the Chevron Tahiti truss spar (2004-2009), both major assets in the deepwater GOM.
Since the Macondo incident in the GOM in April 2010, regulators, safety organizations and industry stakeholders have made significant investments in developing coordinated emergency response efforts.

Much of the work to date has focused on preventive measures so there is a plan of action if an incident occurs. The goal is for operators to be able to immediately activate a comprehensive and detailed technical response plan (approved by BSEE as part of regional and well-specific permit packages), identify a response protocol appropriate for the deepwater containment scenario, prepare and mobilize the appropriate emergency equipment and deploy an integrated well containment system.

As part of its deepwater emergency response plan, HWCG LLC has developed a well containment system that is ready to deploy should another accident occur in the GOM.

ABS Americas President and COO James Watson and ABS Energy Project Development Manager Thalia Kruger recently visited a fabrication shop in Houston, where HWCG’s new well test package was assembled for factory acceptance testing.

The well test package is a component of HWCG’s recently expanded well containment plan, to be used in the event of a subsea blowout where the well cannot be capped and must flow to the surface for processing and collection. This equipment will be able to process 70,000 barrels per day (b/d) and 140 million square cubic feet per day (MMscf/d).

The well test package can be installed on board Helix Energy Solutions Group’s Q4000 deepwater well intervention vessel that is being certified to the ABS Guide for Well Test Systems.

When added to the Helix Producer I, an FPU dedicated to the HWCG containment system, the total production capacity will be 130,000 b/d and 180 MMscf/d.

Comprising 15 deepwater operators, HWCG is one of two consortia in the GOM that has a subsea blowout containment system. The other is Marine Well Containment Company, which is made up of ten industry operators.

These consortia were formed by operators with a common goal to have a subsea blowout response system ready to deploy. Each member makes a financial investment to support the consortium to maintain the equipment’s readiness. Both consortia utilize a system of mutual aid to share member equipment in the event of an incident and provide expertise and resources under a common command center to collectively execute rapid response, intervention and containment.
As shipping companies focus more on operational efficiency, the use of the Northern Sea Route (NSR) is becoming an attractive option for minimizing travel time between northern Europe and Asia. To support shipowners and operators intending to transit the commercial shipping routes through the Arctic seas, ABS has released its Navigating the Northern Sea Route advisory.

Trading through the NSR instead of using the traditional route via the Suez Canal has the potential to reduce the typical transit times between Japan and Rotterdam by as much as 3,400 miles— or ten days. This reduction in travel time brings with it commensurate gains in overall vessel utilization and reductions in bunker costs.

The NSR also will provide access to the growing energy and industrial activity in northern Russia, where a number of projects already have led to greater tanker traffic in the area and have provided the impetus for several recent orders of ice-class LNG carriers for future export trades.

The comprehensive ABS advisory, which was developed with assistance from Russia’s Central Marine Research and Design Institute, provides owners with the information they need to identify the possible technical and operational risks that could arise when trading in some of the world’s most challenging commercial shipping environments.

“The Northern Sear Route was virtually unnavigable by all but powerful icebreakers just a few short years ago,” says Todd Grove, Chief Technology Officer for ABS, who also noted that the Russian Federation’s recent moves to encourage international shipping through the NSR and the melting ice floes there have opened commercial shipping opportunities.

“The NSR’s growing popularity has positive implications for transit times between Asia and Northern Europe,” Grove explains, “but the often unpredictable and unfamiliar shipping environment through the NSR also poses operational and technical challenges.” The ABS advisory was developed to provide the industry with information needed to navigate those challenges safely and efficiently, while also helping to minimize environmental impact.

While the advisory captures the latest regulatory information available and puts forward an overview of typical shipping conditions, it is intended strictly for informational purposes, says Grove. Owners and operators interested in using the NSR should visit the Northern Sea Route Administration website (www.NSRA.ru) for the most current information, and refer to the ABS Guide for Vessels Operating in Low Temperature Environments, available for free download at www.eagle.org.
Activity in both the marine and offshore markets is expanding across North America, and that growth is bringing changes. Companies contending with a rapidly evolving business landscape have different needs today than they did a few short years ago. To meet the growing needs of ABS’ North American clients, the organization has realigned and expanded the resources and capabilities allocated to this region.

ABS Chairman, President and CEO Christopher J. Wiernicki explains the strategic value of investing in North America: “The additional personnel assigned to this region will improve our ability to provide best-in-class service and give us more professionals with feet on the ground to strengthen our client relationships.”

North America, which previously was a single region, is now divided into three areas. Each one of these new areas is led by a Regional Vice President (RVP), who reports to James Watson, Americas Division President and COO and is responsible for operations within his area. The RVP will oversee a smaller territory, a move that allows him to devote more time to client relations. Each RVP will be supported by a team of District Managers and District Principal Surveyors.

Stephen Gumpel has assumed the role of RVP in the Eastern Region, which covers the East Coast of the US, northeast Canada and the eastern Caribbean. David Wamsley continues to serve as District Manager, Eastern Region. Both Gumpel and Wamsley are based in the ABS office in New York.

John McDonald now serves as RVP for the Central Region, which includes the Gulf Coast, the Great Lakes and Mexico. McDonald’s team includes Brian Barton, District Manager, Gulf, who is based in New Orleans, Pat Walsh, District Manager, Great Lakes, who works in the ABS office in Cleveland; and Paul Delaire, who is based in Mexico City as Country Manager for Mexico.

Michael Michaud has joined the North American team as RVP of the Western Region based in Los Angeles. The Western Region is made up of the West Coast of the US and Canada and includes Hawaii and Alaska. Michaud is supported by Shadd Williams, who serves as District Manager, Western Region, from his base in Oakland, California.

ABS also established a new Strategic Account Management team, which will assist with larger North America-based clients that have international operations. The objective is for this team to work with surveyors, engineers and other class-related service teams to leverage the full capabilities of the organization. Joseph Woods, who now serves as Vice President, Strategic Account Management, is leading the team. Meanwhile, Matthew Tremblay continues in his central role of Vice President of Engineering for the ABS Americas Division. And Stephen Auger is in the role of Senior Vice President of Operations, where he is responsible for coordinating overall service delivery.

Watson is optimistic about the reorganization. “These management changes will allow us to better support our members and clients as a trusted resource and solutions provider,” he says. “I am excited by the opportunities that are opened up because of this reorganization and am looking forward to seeing ABS expand its leadership position in North America.”

- Joseph Woods
- Matthew Tremblay
- Stephen Auger
Over the past year, the ABS Operations and Environmental Performance (OEP) team has expanded its services and global presence to support the growing needs ABS members and clients have in the areas of asset performance, energy efficiency and environmental compliance. A recent realignment has brought OEP together with ABS Nautical Systems (NS) and the Applied Innovation team from ABS Technology department, now Asset Integrity Management (AIM), to form the new Asset Performance Management (APM) group. This new team is charged with developing the innovative concepts, tools and practices that provide complete life cycle services that complement traditional class efforts.

“Our goal is to provide a one-stop-shop for our ABS clients to get answers on the latest technology, trends and services regarding asset performance,” says ABS Senior Vice President of Asset Performance Management Howard Fireman. “There are significant synergies among the OEP team, Nautical Systems and our new Asset Integrity Management group that we will be leveraging in the future.”

A key focus of this new organization will be to better strengthen, enhance and integrate the functional strengths of NS with the other services provided by ABS. The goal is to help marine and offshore clients optimize the performance of their assets while maintaining safety. This will be achieved by better integrating traditional class services with the unique enabling technologies developed by ABS.

Joining the team is Stephen Schwarz, Vice President and Chief Operating Officer for the NS Product Line. Bringing a wealth of commercial software experience to the organization, Schwarz is responsible for leading the NS team in building on its strong legacy of fleet management software.

“When the opportunity arose to join the Nautical Systems team I was very excited,” says Schwarz. “ABS has an excellent reputation in the marketplace, and I believe that by bringing these teams together internally we will be able to deliver strong products to market for both our class and fleet management clients.”

Also joining the expanded organization is Chris Serratella, who previously led the Applied Innovations group, as Director of AIM. Serratella and his team have been previously involved with both OEP and NS in the development of tools to assist owners in areas such as energy management.

APM also has added new skill sets such as a marine scientist to conduct environmental reviews of ballast water technology and additional commercial naval architects to assist in communication with design firms and shipyards.

Looking to the future, APM is identifying new opportunities for ABS to deliver cutting-edge solutions to its clients. In the coming months the team will release a suite of services around the three-dimensional hull and maintenance inspection (HI3D) program currently under development. In addition, the OEP team is developing the next generation of vessel performance benchmarking, operational optimization services and energy management solutions via the NS5 Enterprise Energy & Environmental Manager module.

“Tremendous opportunity for APM to use performance verification data to help build the products and services needed for the future of class,” says Fireman. “To effectively solve the real-world operational concerns of the marine and offshore industries, we must continue to integrate and expand life cycle services with classification services.”

With professionals positioned around the world, the ABS APM group is prepared to help clients with their asset life cycle needs.
When studying ways to extend floating production unit (FPU) life, there are many aspects that affect the future survivability and longevity of the asset, including its design, structural integrity and maintenance as well as fatigue life and environmental load changes. Major challenges can relate to the hull structure and, in the case of floating production, storage and offloading units (FPSOs), this issue can be even more challenging because of the large number of onboard cargo tanks that must be inspected and maintained.

To address these and other key aspects of FPSO life extension, ABS recently participated alongside industry and regulatory agencies in an FPSO workshop supported by the Instituto Brasileiro de Petróleo, Gás e Biocombustíveis (IBP) and the Society of Petroleum Engineers following the OTC Brasil 2013 conference and exhibition, in Rio de Janeiro, Brazil.

The event, “How to Extend Operating Life,” attracted around 200 attendees from the offshore industry, with regulatory insights provided by Brazil’s National Petroleum Agency (ANP) and ABS. Technical presentations came from Brazil’s primary FPSO operators, SBM and MODEC, and multinational energy majors Chevron, Total and Statoil, along with Brazil’s state-run Petrobras.

The primary objective of the workshop was to facilitate discussion about upcoming frontiers in technology development and how to apply technology to evaluate the possibility of extending the service lives of FPSOs working offshore Brazil.

Christiane Machado, ABS Manager of the Brazil Offshore Technology Center (BOTC), shared ABS’ most recent technology developments – with explanation of specific class requirements related to production unit life extension – being carried out at ABS headquarters in Houston and BOTC, where engineers are conducting local studies on FPSOs.

Machado outlined for attendees the critical aspects of life extension and the expected scope of work to be developed, which encompasses structures, mooring systems, machinery and stability.

“Class societies provide operators with critical information such as the steps taken in hull reassessment based on a review of the original design calculation results – as well as updated ones – and the in-service inspection plan for life extension’s relationship with these calculation results. We also track results trends during service life and modifications on the design hull parameters,” she said.

Machado also focused her speech on FPSO maintenance challenges stemming from the large number of surveys that are required and the impact these surveys have on engineering documentation.

A wise approach to extend FPSO life is to map the unit’s structural behavior according to Rule requirements and to develop trend curves for each finding by accumulating the design and operation modifications and
their consequences on structural behavior and global performance, she said. This way, designers, operators and ABS can understand how each specific critical point of the hull structure develops by years. Having this data would allow engineers to better predict the future behavior of the unit and then to accurately specify safety factors and reduce the number of additional complex numerical simulations and close-up surveys.

As an example, Machado pointed to an FPSO life extension research and development (R&D) project under way at BOTC, where ABS is studying the impact that modifying structural design parameters will have on an existing FPSO. These findings are being catalogued so they can be incorporated into a new Guide on life extension based on ABS’ existing Rules for Building and Classing Floating Production Installations (FPI Rules) to better define the current critical points of the structure according to surveys and Rule requirements.

BOTC already has presented some of its preliminary results of the prescriptive Rule requirements of that studied unit, indicating that it is both possible and productive to reassess mature FPSOs for the current FPI Rules while taking advantage of the more sophisticated design review tools and criteria, Machado said.

The project’s next steps for 2014 and 2015 are to develop methodologies for consideration of the non-linear behavior of FPSO structures in their current condition (including wastage and coating conditions), the typical fracture mechanics modeling that can be used as part of this structural investigation and recent real-time hull monitoring as an alternative to close-up surveys and its consequences on engineering considerations.

Meanwhile, it is important for industry to collect more data and to reevaluate global performance of FPSO units periodically so operators and class societies alike can have a clear understanding of and develop best practices for service life monitoring and maintenance.

Toward that end, ABS through BOTC and ABS Group are working together to deliver a pilot program to Brazilian operators.
On the heels of its Mariner Personal Safety (MPS) project initiated in 2009 with Lamar University in Beaumont, Texas, ABS is launching the Mariner Safety Research Center. The objective of this new initiative is to generate pragmatic safety guidance and to create a public means for sharing information.

ABS’ industry-wide, anonymized online database will act as a ‘safety clearinghouse’ by placing safety data into a usable context for owners and operators, according to ABS Safety and Human Factors Group Manager Kevin McSweeney. The safety guidance will include maritime industry injury and close call (near-miss) benchmarking and trending metrics, a database of industry-developed corrective actions and lessons learned, as well as results of MPS and maritime safety culture data analyses.

The center’s goal is different from those inherent to structural design and construction analysis, McSweeney says. An industry-specific baseline will underscore safety awareness and safety culture on board vessels by providing shipowners and operators with safety data that are actionable.

The database currently holds more than 50,000 reports from 27 industry partners representing more than 1,000 vessels and 37,000 mariners. The website will have varying levels of access to these data, some of which will be available to the public and other data only available to those in partnership with ABS and the center.

Safety data include benchmarking and trending statistics, safety spotlight reports focusing on a unique hazard and ergonomic/safety discussion papers covering hazards such as hearing loss, slips, trips or falls and human performance in extreme environments.

“We’ve worked with several companies to conduct safety culture self-assessments,” McSweeney adds. “Companies are coming to ABS to identify and benchmark what their safety culture is and to identify potential leading indicators of safety. Soon we will be able to show how their results compare to other industry partners.”

The MPS database will bring to light common hazards and behaviors affecting marine and offshore personnel, according to global owner/operator AET. The Kuala Lumpur-based company is actively participating in the ABS and Lamar University MPS initiative. AET’s overall view of safety as a key pillar of strength within its organization remains consistent, with the reinforcement of safety as a condition of employment being the first step. “Line management accountability ensures a proactive approach toward operational safety,” says Global Director of Customer Partnerships and Fleet Management Abdul Rahim Abdul Rahman.

According to him, the company operating model is based on a foundation of a fair and informed leadership who are aware of the prevailing environment at all times. In the continual process of reviewing its HSE performance, AET developed a Safety and Operational Excellence Roadmap and implementation plans to enhance the safety and operational abilities for its fleet.

“‘We have moved beyond looking at the trailing indicators that have been historically relied upon in the industry,’” explains Head of HSSE Captain Fared.
ABS Forum Addresses Arctic R&D

With exploration for resources and marine transportation in the Arctic becoming increasingly viable, there has been an uptick in industry interest. Consequently, research in the discipline of harsh-environment challenges and commercial exploitation has been rising steadily.

As a leader in Arctic research, ABS has hosted a number of industry workshops over the past two years with the goals of sharing successes, evaluating future research needs, creating opportunities for joint industry projects and providing practical and valuable guidance for Arctic operations.

According to ABS Director of Shared Technology James Bond, the workshops offer an environment for discussion that can lead to research projects. “ABS is collaborating to define new subjects for R&D that address Arctic drilling and production operations so the industries we serve can move more rapidly into this frontier.”

The ABS workshops have provided a forum for addressing a broad range of subjects, including the need for a global ice load model and full-scale measurement and Arctic regulations and standards development.

Winterization issues also have been included in the ABS workshops, along with discussion on the role of ice management in mooring system design, disconnection and reconnection devices and practical guidance on global ice load prediction.

The most recent ABS Arctic event took place in Seattle in conjunction with a Society of Naval Architects and Marine Engineers (SNAME) conference. This introductory Arctic training event provided participants with a view of up-to-date Arctic marine and offshore activities, regulations, ship-ice interaction, performance of ice capable ships, ice-strengthening design standards, design and operational considerations for low-temperature environments and design-assessment procedures.

Bond opened the session with a look at current issues and engineering challenges, discussing trends that have resulted in increased demand for energy and other Arctic resources. “While production and transport of resources in Arctic regions is not new,” Bond explained, “the character of these activities has changed, leading to new technical challenges for regulators, designers, builders and operators of offshore facilities and ships that serve these areas.”

According to Bond, the role ABS plays in Arctic frontier development is critical. “As exploration and production activity move into more harsh environments, it becomes even more important for ABS to work with industry and academia,” Bond said. “Together, we can break down the technology barriers that today restrict Arctic operations.”
Not all accidents are avoidable, but many occur when prior alerts and warning signs are overlooked or missed. Risks are compounded when drilling operations are taking place in deeper water and harsher environments. It is critical for operators and drilling contractors to proactively manage risk when offshore units are working in exceptionally challenging areas.

ABS and Safetec Nordic AS, an ABS Group company that provides integrated risk and asset management services for the offshore industry, are working together to develop a blowout risk model that couples historical operational experience with risk analyses using a novel methodology. The goal is to be able to detect and manage accident sequence precursor (ASP) indicators – signs that an accident is about to happen – so preventive measures can be taken to avoid a catastrophic event.

“Offshore incident investigations often show us that prior to an accident, there are warning signs,” explains ABS Senior Engineer Smarty Mathew John, who leads the ABS effort for the ASP program. “If detected and managed, these precursor indicators can provide offshore personnel with critical information that could ultimately help them prevent accident progression leading into a catastrophic incident.”

Though the terminology may sound complicated, the concept is relatively simple. Precursors are operational events or deviations from the norm that have the potential to result in an accident. Precursors can include incidents, near misses and unusual system conditions encountered during routine operations, inspections, testing and engineering evaluations.

The team that developed the risk model used historical accident and reliability data, relevant offshore industry experience and accident investigation reports from the North Sea and the GOM.

“ABS is working toward validating this new risk management approach that can detect precursors to major events so that the probability of a major offshore accident can be reduced,” John says, adding that he believes the ASP methodology is a comprehensive approach because it addresses not only the technical factors but also operational and organizational factors.

While progress is ongoing to apply ASP to offshore operations, there is a need for an industry wide effort to collect real-world precursor data related to well integrity and model testing before this methodology can be integrated into a daily risk management program.

“Offshore incidents can have a devastating impact on crew safety, offshore assets and the environment,” says John. “Tools that provide proactive risk management like ABS’ ASP program heighten awareness, offer enhanced reliability and help mitigate risk.”

Competence Center Offers Risk Training

Safetec opened a new Competence Center in Bergen, Norway, in November 2013 to provide education and training for industry-focused organizations. The center’s specialized training courses showcase Safetec’s multi-disciplinary experience in the areas of risk management, safety, reliability and emergency preparedness in the onshore and offshore sectors.

Building on Safetec’s 30 years of risk management consulting within the oil and gas industry, the Competence Center trains clients to make the right decisions concerning risk and major accidents, preferably based on relevant studies Safetec has done on their assets, says Vibeke Francisca Een, Department Manager of the Competence Center.

There are plans to expand the center to include several lecturing rooms where the company will host courses and trainings focused on risk management, safety and emergency management. The courses will use a combination of scenario-based training, role play, skills training, workshops and lectures.
Protecting crews and assets has never been more important. That is why ABS has taken steps to enhance fire safety with the Guide for Enhanced Fire Protection Arrangements released in the fourth quarter of 2013.

According to the team that developed the Guide, the new document provides guidance for improved safety on offshore vessels and installations as well as oceangoing vessels.

The impetus for this work was clear, says ABS Director of Marine Technology Christina Wang. “It is critically important to protect vessels and offshore installations from onboard fires, and ABS is continuing to address this and other concerns that have the potential to impede safe operations.”

According to ABS Manager of Marine Technology Michael Wasicek, one of the primary goals of this new Guide is to provide criteria for notations that increase the level of protection against fires not only on oceangoing vessels but on mobile offshore drilling units (MODUs), mobile offshore units (MOUs) and FPSOs. Another of the critical objectives in creating the Guide is to help to reduce the consequences of an onboard fire. The Guide provides specific measures for fire prevention and detection and addresses arrangements crucial to controlling and extinguishing an onboard fire.

Obviously, measures to prevent onboard fires are not new to either industry, Wang says, noting that there are rules and regulations already in effect that identify certain fire safety arrangements that must be provided on board a vessel, drilling unit or offshore installation. The decision to develop the new ABS Guide was driven by the fact that although the standing rules and regulations mandated minimum requirements for many years, fire and explosion continue to remain one of the top safety hazards for any vessel and its crew.

Part of the reason for continued issues, Wang explains, is that fire safety requirements provided in existing rules and regulations by other classification societies have not addressed the concerns within the industrial portions of offshore units to the extent that ABS now does. The new Guide is the first such document to offer optional notations recognizing compliance with a set of enhanced requirements specifically addressing the unique fire risks associated with the industrial areas of FPSOs.

One of the unique features of the Guide is the inclusion of a number of optional notations. These include EFP-A and EFP-A+ for accommodation areas, EFP-M for machinery spaces, EFP-C for cargo areas and EFP-IA for industrial areas.

“Combinations of these notations can be awarded as well,” Wang says, “which means the Guide not only introduces more options, but more flexibility for asset owners. The optional notations allow them to choose the areas of specific concerns on the ship, MODU, MOU, FPSO or other asset and to address them in a way that allows both the asset owner and the industry to see at a glance the additional notations awarded.”

Recently Released ABS Rules & Guides

ABS Rules and Guides are available for purchase and/or free download directly from the website at www.eagle.org. Subscribe online to receive email notifications when new publications or notices are available. The following listing reflects Rules and Guides updates from 1 September 2013 to 10 February 2014.

RECENT PUBLICATIONS

UPDATE
Rules for Building and Classing Steel Vessels, January 2014 (Pub 2)
This edition of the Rules apply to steel vessels of 90 meters (295 feet) and over in length. The requirements are applicable to those features that are permanent in nature and can be verified by plan review, calculation, physical survey or other appropriate means. These Rules are available for download or as a printed set.

UPDATE
Rules for Building and Classing Steel Vessels for Service on Rivers and Intracoastal Waterways, January 2014 (Pub 4)
These Rules are applicable to barges, towboats, cargo vessels, dredges, ferries and passenger vessels intended for service on major rivers and on connecting intracoastal waterways. These Rules are available for download.

UPDATE
These Rules apply to self-propelled steel vessels under 90 meters (295 feet) in length intended for unrestricted ocean service. The Rules cover hull construction, machinery equipment and systems, testing and survey. These Rules are available for download.

UPDATE
Rules for Building and Classing Mobile Offshore Drilling Units, January 2014 (Pub 6)
These Rules contain standards for the design, construction and periodic surveys after construction for self-elevating, column-stabilized and surface-type mobile offshore drilling units (MODUs). These Rules are available for download or as a printed set.

UPDATE
These Rules have been reorganized to move the requirements for remotely-operated vehicles, handling systems and dive control stations from Appendices to the applicable Rules sections. Requirements for lock-out submersibles have also been added. These Rules are available for download.

UPDATE
Rules for Building and Classing Single Point Moorings, January 2014 (Pub 8)
This edition of the Rules includes changes to the technical criteria including the introduction of an adjustment factor (Q) to account for higher strength steels in the determination of buoy scantlings. For vessels that will be permanently moored, the ABS Rules for Building and Classing Floating Production Installations applies. These Rules are available for download.

UPDATE
Rules for Building and Classing Steel Barges, January 2014 (Pub 10)
These Rules are applicable to steel barges intended for unrestricted ocean service, except where specifically mentioned otherwise. These Rules are available for download.

UPDATE
Part 2, Rules for Materials and Welding, Aluminum and Fiber Reinforced Plastics (FRPs) (Chapters 5-6), January 2014 (Pub 22)
These Rules cover the materials and welding requirements for vessels structured from aluminum and fiber. These Rules are available for download.

UPDATE
This Guide establishes requirements for accommodation barges with conventional barge displacement hulls. This publication is available for download or print on demand.

UPDATE
Rules for Building and Classing High-Speed Craft, January 2014 (Pub 61)
Updated to Rules, this publication specifies requirements for hull construction (based on steel, aluminum alloys and fiber-reinforced plastics), machinery equipment and systems, testing and survey. These Rules are applicable to high-speed craft intended for commercial or governmental service. The requirements apply to monohulls up to 130 meters in length, multi-hulls up to 100 meters, surface effect ships up to 90 meters and hydrofoils up to 60 meters. These Rules are available for download.

UPDATE
Rules for Building and Classing Facilities on Offshore Installations, January 2014 (Pub 63)
These Rules are applicable to hydrocarbon production and processing systems and associated utility and safety systems on fixed offshore structures as well as systems installed on floating installations. These Rules are available for download.
RECENT PUBLICATIONS

UPDATE *Rules for Building and Classing Floating Production Installations*, January 2014 (Pub 82)
These Rules contain criteria for floating production installations, including the position mooring system and the hydrocarbon production facilities. These Rules are available for download.

UPDATE *Guide for Building and Classing Liftboats*, January 2014 (Pub 107)
This Guide specifies requirements for self-propelled steel liftboats intended for unrestricted service. This publication is available for download.

UPDATE *Rules for Building and Classing High-Speed Naval Craft*, January 2014 (Pub 109)
Updated to Rules, this publication contains technical standards for the design, construction and operational maintenance of high-speed craft for governments and navies. These Rules are available for download.

UPDATE *Rules for Building and Classing Offshore Support Vessels*, January 2014 (Pub 180)
These Rules are applicable for offshore support vessels of all sizes and include specific requirements for specialized multipurpose vessels. These Rules are available for download.

UPDATE *Guide for Vessels with Oil Recovery Capabilities*, December 2013 (Pub 146)
This Guide provides specific requirements for tugboats, barges and other vessels which are intended for service in the event of oil spills and are equipped for the storage of recovered oil floating on the sea. This publication is available for download or print on demand.

UPDATE *Guide for Hull Inspection and Maintenance Program*, December 2013 (Pub 156)
This Guide contains the requirements for the ABS Hull Inspection and Maintenance Program (HIMP) intended to assist users in the development, improvement and application of their hull maintenance management systems. This publication is available for download or print on demand.

NEW *Guide for the Classification Symbols Pre-Laid Position Mooring Systems and Equipment for Mobile Offshore Units*, December 2013 (Pub 205)
This Guide provides the evaluation procedure and technical requirements to verify the eligibility of a position mooring system and equipment (with pre-laid components and accessories) for the optional symbols (P-PL) and (M-PL). This publication is available for download or print on demand.

UPDATE *Guide for Mobile Offshore Units Operating on the Norwegian Continental Shelf, N-Notation*, November 2013 (Pub 155)
This Guide contains technical requirements for compliance with the verification obligations associated with the operation of mobile offshore units on the Norwegian Continental Shelf (NCS). This publication is available for download or print on demand.

NEW *Guide for Exhaust Emission Abatement*, October 2012 (Pub 204)
This Guide provides requirements for the design and construction of exhaust emission abatement systems, focusing on SOx scrubbers, SCR systems and exhaust gas recirculation (EGR) arrangements, and may be applied to all vessel types. This publication is available for download or print on demand.

Recent Updates to ABS Rules & Guides

NOTICES & CORRIGENDA – GENERIC RULES

Part 1 *Rules for Conditions of Classification (2014)*
- Rule Change Notice 1, January 2014
- Corrigenda, February 2014

Part 1 *Rules for Conditions of Classification – High-Speed Craft (2014)*
- Rule Change Notice 1, January 2014
- Corrigenda, February 2014

Part 7 *Rules for Survey after Construction (2014)*
- Corrigenda, February 2014
Recent Updates to ABS Rules & Guides

Notices & Corrigenda

<table>
<thead>
<tr>
<th>Publication</th>
<th>Title</th>
<th>Version</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pub 2</td>
<td>Rules for Building and Classing Steel Vessels (2014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub 4</td>
<td>Rules for Building and Classing Steel Vessels for Service on Rivers and Intracoastal Waterways (2014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub 5</td>
<td>Rules for Building and Classing Steel Vessels Under 90 Meters (295 feet) in Length (2014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub 6</td>
<td>Rules for Building and Classing Mobile Offshore Drilling Units (2014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rule Change Notice 1, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub 10</td>
<td>Rules for Building and Classing Steel Barges (2014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rule Change Notice 2, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub 61</td>
<td>Rules for Building and Classing High-Speed Craft (2014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub 63</td>
<td>Rules for Building and Classing Offshore Installations (2014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub 82</td>
<td>Rules for Building and Classing Floating Production Installations (2014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub 99</td>
<td>Guide for the Environmental Protection Notation for Vessels (2009)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rule Change Notice 5, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rule Change Notice 1, September 2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub 103</td>
<td>Guide for Passenger Comfort on Ships (2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rule Change Notice 1, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub 109</td>
<td>Rules for Building and Classing High-Speed Naval Craft (2014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub 113</td>
<td>Guidance Notes on Structural Direct Analysis for High-Speed Craft (2011)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rule Change Notice 11, October 2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub 155</td>
<td>Guide for Mobile Offshore Units Operating on the Norwegian Continental Shelf, N-Notation (2013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub 156</td>
<td>Guide for Hull Inspection and Maintenance Program (2013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub 158</td>
<td>Guide for the Class Notation Green Passport (GP) (2011)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rule Change Notice 1, September 2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rule Change Notice 2, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub 188</td>
<td>Guidance Notes on Safety Culture and Leading Indicators of Safety (2012)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pub 190</td>
<td>Guide for Crew Habitability on Mobile Offshore Drilling Units (MODUs) (2012)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrigenda, February 2014</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Taking Training to the Yard

In a continuing effort to work with Chinese shipyards, ABS embarked on a new type of client newbuild training in the third quarter of 2013. The basic training session, delivered for Samsung Heavy Industries (Ningbo) Shipyard Co. (SHNC), covered hull, machinery and electrical components. The event, which was offered as part of a joint research project (JRP), is comparable in scope to earlier training offered by ABS to Samsung Heavy Industries in Korea.

ABS Regional Vice President, Southern China Darren Leskoski believes this type of client-focused training will be beneficial to many other local yards. “This training is tangible proof to our clients that ABS is willing to go beyond providing class services and to offer valuable knowledge and insight that will help its clients,” he says. “This type of solutions-oriented training has been delivered to other shipyards, and the impact of the ABS-delivered training is what differentiates us from other class societies.”

At the conclusion of the day, more than 50 attendees earned JRP certificates that reflect general competencies mastered by completing this course. Dignitaries from SHNC, including President Mr. Jin-Yong Park, Vice Presidents Mr. Woong-Guel Lee, Mr. Choon-Gi Kim, Mr. Tae-Pyo Hong and General Manager Mr. Ki-Jung Nam, attended the closing ceremony.

The JRP agreement between the ABS Shanghai Learning Center and the local Ningbo Samsung site office is unique in providing onsite training in the yard for Samsung Ningbo personnel and is one more way ABS is stepping up to meet clients’ needs.

“The training session served not only as a forum for sharing information, but as a relationship building event that has strengthened ties between ABS and Samsung,” Leskoski says. The success of this event serves as a cornerstone for building and offering future training courses. Plans are in place for ABS to offer additional shipbuilding technology training through the JRP for SHNC.
In the chemical tanker shipping sector, the need to maintain skills and understand the latest regulations is critical to the safety of the vessel, cargo, crew and environment. ABS is helping mariners employed by Malaysian owner MISC Berhad and its group of companies to stay safe and compliant using the Chem-eL eLearning package.

The project was managed and developed by ABS in close cooperation with a maritime interactive technology provider, IDESS I.T., from the Philippines, with input from MISC’s training organization Akademi Laut Malaysia (ALAM). The Chem-eL program was delivered to MISC after eight months of rigorous shipboard and shore-based testing, including several reviews by chemical tanker professionals.

Recognizing that web-based learning has proven valuable in training personnel in remote locations, MISC requested an eLearning program that could be used within its company fleet as well as for students at its own training facilities. The objective was to have a training program that would allow personnel in remote locations to have access and, as workload pressure increases on seafarers, to have a tool that would keep vital assets running smoothly.

ABS Chief Learning Officer Mark McGrath says Chem-eL supports safe and compliant shipboard operations by making the necessary training resources available in a flexible way. “eLearning can greatly help officers and crew by allowing learning to take place at each learner’s own pace, catering to his or her own learning style and allowing repetition and reference when required, helping to embed important concepts and underlying principles,” he says.

David Fredrick, Malaysian Maritime Academy CEO, values targeted training that improves the ability of the crew to work more safely and in compliance with regulations. “Ensuring the required level of safety in chemical tanker operations requires a very high standard of training to support crew competence,” he says. “When MISC wanted to develop a training package for use at ALAM and across the company, we knew that ABS had the technical and educational expertise to support our aims and deliver a package that fulfilled our needs.”

Course topics include an introduction to chemical tank practice, chemical and physical cargo properties, hazards and hazard control design, cargo containment and handling systems, safe working practices, pollution prevention and ballast operations. Tank cleaning operations, risk management, the ship to shore interface, emergency, security and custody transfer aspects relating to carriage of liquid chemicals in bulk also are covered. Taken as a whole, the course provides complete coverage of the knowledge needed by personnel to understand chemical tanker operations.

MISC Senior Manager, Operations, Chemical Tanker Business Unit, Capt. Loo Eng Chuan says, “Chem-eL is the first program that provides step-by-step guidance to learners from basic understanding to advanced stages of chemical tanker operations. And it also covers commercial aspects of the chemical business. Seafarers and managers from MISC’s Chemical Tanker Business Unit who have tested the program have responded very positively. One commented that having been in chemical tanker operations for more than 20 years, he wished a similar program had been available when he started his career.”

Chem-eL Training Improves Crew Competence
ABS Membership Plaques

Christopher J. Wiernicki, ABS Chairman, President and CEO, presents an ABS membership plaque to Brooke F. Shapiro, Associate, Winston & Strawn LLP, while Philip J. Shapiro, President and CEO, Liberty Maritime, looks on.

Chull Yun Kim, Executive Vice President and CTO, Samsung Heavy Industries Co., Ltd., receives an ABS membership plaque from Tony Nassif, ABS Executive Vice President and COO.

Richard Pride, ABS Greater China Division President and COO, presents an ABS membership plaque to Yu Ya, President, Yantai CIMC Raffles Offshore Ltd.

Wolfgang Buttgereit, ABS Regional Vice President, Northern Europe, presents an ABS membership plaque to Captain John Baptist, Global Director for Asset Management and Commercial Projects, AET UK Limited, London.

Stephen Auger, ABS Americas Senior Vice President, Operations, looks on while Spencer A. Schilling, President, Herbert Engineering Corp. receives an ABS membership plaque from James Watson, ABS Americas Division President and COO.

Brad Achorn, ABS Regional Vice President, Greater China, presents an ABS membership plaque to Dr. Robert Lai, Chairman, CSBC Corporation.
Mark Corsetti, ABS Country Manager, Denmark, presents an ABS membership plaque to Palle Laursen, Vice President, Technical Maersk Line.

Abdullah Al Sulaiti, Deputy Managing Director, Qatar Gas Transport Company Ltd. (NAKILAT), receives an ABS membership plaque from Tony Nassif, ABS Executive Vice President and COO.

Stephen Gumpel, ABS Regional Vice President, Eastern North America, presents an ABS membership plaque to John Odegaard, Executive Director, Naval War College Foundation.

Wolfgang Buttgereit, ABS Regional Vice President, Northern Europe, presents an ABS membership plaque to Captain Kurt Dampkaer, Technical Manager, Survey Association of Denmark.

Bang-Eun (Brendan) Jeong, Senior Executive Vice President and CTO, DSME Shipyard, receives an ABS membership plaque from Tony Nassif, ABS Executive Vice President and COO.

Stephen Gumpel, ABS Regional Vice President, Eastern North America, presents an ABS membership plaque to John Odegaard, Executive Director, Naval War College Foundation.

Wolfgang Buttgereit, ABS Regional Vice President, Northern Europe, presents an ABS membership plaque to Captain Kurt Dampkaer, Technical Manager, Survey Association of Denmark.

Bang-Eun (Brendan) Jeong, Senior Executive Vice President and CTO, DSME Shipyard, receives an ABS membership plaque from Tony Nassif, ABS Executive Vice President and COO.

Stephen Gumpel, ABS Regional Vice President, Eastern North America, presents an ABS membership plaque to John Odegaard, Executive Director, Naval War College Foundation.

Wolfgang Buttgereit, ABS Regional Vice President, Northern Europe, presents an ABS membership plaque to Captain Kurt Dampkaer, Technical Manager, Survey Association of Denmark.

Bang-Eun (Brendan) Jeong, Senior Executive Vice President and CTO, DSME Shipyard, receives an ABS membership plaque from Tony Nassif, ABS Executive Vice President and COO.
Wolfgang Buttgereit, ABS Regional Vice President, Northern Europe, presents an ABS membership plaque to Captain Claus Thornber, CEO, Nordic Tankers.

Sokhyon (Peter) Paek, President and CEO, SK Shipping Co., Ltd., receives an ABS membership plaque from Tony Nassif, ABS Executive Vice President and COO.

Bobby Wong, ABS Country Manager for Singapore, presents an ABS membership plaque to Sunny Mok, Executive Director, Pacific Radiance Ltd.

Joseph Woods, ABS Americas Vice President, Strategic Account Management, presents an ABS membership plaque to James Farley, President, Kirby Offshore Marine.

ADDRESS CHANGES
Please note the following changes to contact details for ABS offices.

CHINA
GUANGZHOU
ABS Greater China Division
Room 2510, Block B, Longde Building
373, Tianhe Road, Tianhe District
Guangzhou, China
Tel: 86-20-3886-7372
Night Tel: 86-1380-881-1770

QINGDAO
ABS Greater China Division
Room 1401, Unit 1, Block 2, Yu Long Mansion
No. 19 Miao Ling Road, Lao Shan District
Qingdao, China
Tel: 86-532-88893037
Night Tel: 86-1358-327-8736

INDIA
MUNDHWA, PUNE
ABS Professional Services (India) Private Limited
Sai Hira, survey No. 94, Hissa No. 25/B-1,
CRS No. 1130
Mundhwa, Pune, India 411 036

RUSSIA
MOSCOW
ABS Europe Ltd.
Kaluzhskaya plostchad 1, str 1, kv 115
Moscow 119049, Russia
SNAME Recognizes Accomplishments of ABS Chairman

The notable achievements of ABS Chairman, President and CEO Christopher J. Wiernicki in the maritime field were recently recognized by SNAME. During its annual membership meeting, SNAME awarded Wiernicki the Vice Admiral “Jerry” Land Medal, its most prestigious award, for “using his position, his knowledge and experience to continually advance technical innovation within the marine and offshore industries.”

Within its citation for the medal, SNAME noted several technical innovations made by ABS under Wiernicki’s leadership, including the development of the US Navy’s Achieving Service Life Program, the development of new Rules and Guides to address technical advances in the offshore sector, the introduction of the ABS Integrated Software Quality Management system to address safety concerns and manage the wide range of software systems used on offshore units and launching a comprehensive asset integrity management program to support the offshore industry.

SNAME also took note of Wiernicki’s continued commitment to encourage “new generations of naval architects and marine engineers by providing financial support to the leading maritime college and university programs in the US and, increasingly, around the world.”

Wiernicki joins former ABS Chairman Robert D. Somerville, former ABS President Robert E. Kramek and former ABS Chairman Andrew Nielson in receiving the SNAME Land Medal.

While accepting the award, Wiernicki commented, “I am privileged to work in the maritime profession, and I’d like to thank all of my colleagues at ABS. I would not be receiving this honor were it not for their dedication to the ABS mission.”

Riva Takes on Chief Surveyor Role

Joseph “Joe” Riva, a 32-year veteran of ABS, has recently been named ABS Vice President and Chief Surveyor. In this role, Riva is responsible for guiding and overseeing ABS global survey activities and applying ABS Rules, Guides and international regulations to uphold consistency and quality in service delivery.

Riva brings tremendous experience to this role, having previously served as Assistant Chief Surveyor for the ABS Americas and ABS Europe Divisions. He is the ABS program manager for the US Coast Guard Alternative Compliance Program and has represented ABS on the IACS Survey Panel. During his 32 years with ABS, Riva has held field surveyor positions around the world for both new construction and in-service assets across the marine and offshore sectors.

ABS Chairman, President and CEO Christopher J. Wiernicki notes that Riva is uniquely qualified for the role of Chief Surveyor because he combines the strong technical experience across all areas of survey with a proven track record of organizational leadership and client service. “In carrying out our mission of promoting safety at sea, one of the most important roles is that of Chief Surveyor,” says Wiernicki. “It is a vital position and one that Joe is ready to assume.”

Riva will succeed Linwood “Lenny” Pendexter, who has held the position for the past ten years. Pendexter, a nearly 40-year veteran of ABS, will assist with the Chief Surveyor transition until his retirement during the first quarter of 2014.
Lloyd’s List Award Spotlights ABS Middle East

On the heels of its first award of 2013 recognizing service delivery in the Middle East, ABS was again named Best Class Society at the Lloyd’s List Middle East and Indian Subcontinent Awards in October 2013. The organization also received the Safety and Quality Award at the tenth anniversary of the Seatrade Middle East and Indian Subcontinent Awards in December 2013.

All three awards recognize ABS’ contribution to classification services in the Middle East region, where it has expanded its workforce and training capabilities to address environmental and performance challenges facing the industry.

ABS Regional Vice President, Middle East Joe Brincat says, “We are honored to have been recognized by the Lloyd’s List and Seatrade judges as a classification and safety leader in the region. The expanding ABS presence in the Middle East and Indian subcontinent, coupled with the launch of several innovation solutions across the organization, enhances our regional service delivery and helps clients navigate through evolving regulatory and operational pressures.”

Safety is at the core of ABS, adds Brincat. The Seatrade award recognizes ABS’ contribution to promoting safety, judged on key indicators including investment in safety training, social and environmental responsibility and its contribution and commitment to the development of the maritime sector across the region.

Of the leading classification societies, ABS supports the largest presence in the Middle East region with offices in the United Arab Emirates, Saudi Arabia, Qatar and Bahrain, and with nearly 100 marine and offshore surveyors and engineers.

In 2012, ABS reached a major milestone with the opening of an expanded engineering office in Dubai to serve as a centralized resource in the Middle East. The opening of an office in Fujairah that same year further contributed to ABS’ regional expansion. Both openings have had a positive response from ABS clients, with single time zone capability for face-to-face meetings and a closer focus on both marine and offshore business.

Technical Presentations Draw Brazil Crowd

ABS and ABS Group engineers took advantage of the second annual OTC Brasil in Rio de Janeiro to host a presentation series that addressed a broad range of ABS initiatives. The informational talks, which were held at the ABS booth, gave attendees the chance to hear about some of the interesting offshore work being done by ABS in Brazil and around the world. The presentations, which were done in English and Portuguese, took place from 29-31 October 2013.

ABS presenters discussed a variety of topics, including local content in Brazil, risk management and technical subjects that examined analysis of floating structures. Regulatory issues addressed drilling systems classification, statutory compliance for floating production units in the Gulf of Mexico and the new ILO Maritime Labour Convention. There also were discussions about Integrated Software Quality Management and software quality engineering for offshore assets.

With a presence in Brazil for 65 years, ABS has invested in developing strong relationships and establishing itself as a reliable and trusted industry partner. This event provided the opportunity to share some of the innovative developments ABS has been part of and to offer participants access to some of the organization’s leading engineers.
ABS Participates in China World Shipping Summit

The World Shipping (China) Summit, hosted by COSCO, Drewry, Maritime China and the Journal of Commerce, took place at the Shangri-La Hotel in Ningbo, Zhejiang Province, China, from 5–8 November 2013. The theme of the summit was Responding to New Realities, organized into highly targeted sessions, including the ‘China Factor’ evolution, the future of shipping strategy and industrial restructuring. More than 800 delegates from around the world participated in the event.

The 2013 summit was attended by such dignitaries as the Governor of the People’s Government of Zhejiang Province Li Qiang, Chief Safety Inspector of the Ministry of Transport of the People’s Republic of China Song Jiahui and Director of the Board, President and Party Committee Member of China Ocean Shipping (Group) Co. Li Yunpeng. Executive Vice President and Party Committee Member of COSCO Group Sun Jiakang chaired the opening ceremony. And Chairman of the Board of China Ocean Shipping (Group) Co. Ma Zehua delivered the keynote address, “Responding to Industrial Transformation through Concerted Efforts.” His primary message was that reform of the international shipping industry will take place on two levels – external change brought about by global economics and trade and change within the shipping industry, centering on what he referred to as the “digestion of excess capacity.”

ABS participated in this event as a session sponsor, and ABS Greater China Division President and COO Richard Pride gave a presentation titled “Trends for Ultra Large Container Carriers” during a top view session, a high-level component of the conference agenda.

More than 50 top-level representatives from shipping and relevant industry attended this annual meeting and took part in the presentations.

SNAME Selects ABS for Best OTC Paper

Each year, SNAME recognizes with an award the best paper presented by a SNAME member at the Offshore Technology Conference (OTC). At OTC 2013, ABS Marine Technology Director Christina Wang brought that honor home to ABS for her conference paper “Execution of New Drillship Project Perspectives from Owner, Class, Builder and Designer.”

Wang co-authored the paper with ABS Senior Principal Engineer Suck Hwan Lee, Offshore Engineering, Busan, Korea, and representatives from Diamond Offshore Drilling, Inc., Hyundai Heavy Industries and GustoMSC.

Wang’s idea to include each partner’s perspective was novel for ABS. “I decided to take a more collaborative approach that would benefit ABS as well as our partners,” she explains. “The result was a paper that encompasses the full work scope from design and construction through certification/verification and delivery, coupled with an operator’s and builder’s perspective to provide a holistic understanding of a drillship project.

“Through the years, we’ve worked to strengthen these relationships,” she adds. “I thought it would be interesting to engage all of our clients to develop this paper, and I was surprised when everyone was on board with the idea,” she says. “As an industry, we gain a greater appreciation for the work we do by sharing our perspectives, and we also gain critical knowledge that can lead to better practices in the areas of safety and efficiency.”
Newly Classed Vessels and Facilities

Noble Globetrotter II, a 35,676 gt drillship, Ice Class IA Hull only, DPS-3, built by STX Dalian H I for Noble Drilling Holding.

1 July 2013 to 31 December 2013
Newly Classed Vessels and Facilities

TANKERS

ANZER, 3,308 gt / 4,995 dwt, R2, VEC, ES, built by Yardimci Gemi Insa for Yardimci Gemi Insa

ARDMORE SEAVENTURE, 29,996 gt / 49,997 dwt, VEC-L, TCM, BWE, CSR, AB-CM, RES, built by SPP Shipbuilding for Bailey Shipco

C. FREEDOM, 160,705 gt / 313,998 dwt, AB-CM, VEC, TCM, GP, built by Hyundai H I for HDGS C Shipholdings

C. PASSION, 160,705 gt / 313,998 dwt, VEC, TCM, BWE, CSR, AB-CM, GP, built by Hyundai H I for HDGS B Shipholdings

C. SPIRIT, 160,705 gt / 318,451 dwt, VEC, AB-CM, BWE, CSR, GP, built by Hyundai H I for HDgs A Shipholdings

EVINOS, 29,940 gt / 49,997 dwt, VEC, TCM, AB-CM, BWE, CSR, GP, SPMA, built by STX Offshore & Shipbuilding for Jennet Maritime

GLAFKOS, 29,940 gt / 49,997 dwt, VEC, TCM, BWE, CSR, AB-CM, GP, SPMA, built by STX Offshore & Shipbuilding for Chloe Maritime

HYDRA VOYAGER, 161,692 gt / 319,357 dwt, NBLES, VEC-L, TCM, BWE, BWT+, CSR, AB-CM, ENVIRO+, GP, RES, SPMA, built by Daewoo Shipbuilding & Marine Engineering for Lorin Management

JING GANG SAN, 164,169 gt / 318,448 dwt, VEC-L, TCM, AB-CM, SPMA, built by Shanghai Jiangnan-Changxing Shipbuilding for Nan Sia Maritime

LAMBADA SPIRIT, 83,882 gt / 154,036 dwt, HIMP, BLU, ðOPS-2, NIBS, R1, VEC-L, TCM, SH-DLA, BWE, CSR, AB-CM, ENVIRO+, GP, RES, built by Samsung H I for Lambda Spirit

LARCOM, 2,572 gt / 3,963 dwt, built by Jiangsu Jiuzhou Shipbuilding for International Bunker Supplies

MARINE EMERALD, 724 gt / 985 dwt, built by Ocean Leader Shipbuilding for Dong Jiang Tankers

NAVE ATROPOS, 42,341 gt / 74,695 dwt, VEC, TCM, AB-CM, BWE, CSR, ENVIRO, GP, built by Sungdong Shipbuilding & Marine Engineering for Thera Shipping

ORKIM GLORY, 5,698 gt / 8,876 dwt, built by Wenling Xianfeng Shipyard for Orkim Marine

SAMBA SPIRIT, 83,882 gt / 154,107 dwt, HIMP, BLU, ðOPS-2, NIBS, R1, VEC-L, TCM, SH-DLA, BWE, CSR, AB-CM, ENVIRO+, GP, RES, built by Samsung H I for Samba Spirit

SEAFRIEND, 29,925 gt / 50,660 dwt, VEC-L, TCM, AB-CM, BWE, CSR, ENVIRO, GP, SPMA, built by Samsung H I for Samba Spirit

STENAWECO GLADYS W, 29,940 gt / 49,995 dwt, VEC, TCM, BWT+, CSR, AB-CM, SPMA, built by STX Offshore & Shipbuilding for Rosebay Marine

STENAWECO JULIA L, 29,940 gt / 49,995 dwt, VEC, TCM, BWT+, CSR, AB-CM, SPMA, built by STX Offshore & Shipbuilding for Sterling Ocean Shipping III

STENAWECO MARJORIE K, 29,940 gt / 49,995 dwt, VEC, TCM, AB-CM, BWT+, CSR, SPMA, built by STX Offshore & Shipbuilding for Sterling Ocean Shipping I

STI BERYL, 29,708 gt / 49,990 dwt, VEC, TCM, AB-CM, BWE, CSR, ENVIRO, GP, SPMA, built by Hyundai Mipo Dockyard for Sti Beryl Shipping

STI FONTVIELLE, 29,715 gt / 49,990 dwt, AB-CM, CSR, VEC, TCM, BWE, ENVIRO, GP, SPMA, built by Samsung H I for Sti Fontville Shipping
DENSA HAWK, a 36,746 dwt bulk carrier, BC-A, TCM, GRAB 20, AB-CM, CSR, built by Hyundai-Vinashin Shipyard for Hawk Marine & Trading.

HAMPTON BRIDGE, a 76,847 dwt bulk carrier, BC-A, TCM, GRAB 20, AB-CM, BWE, CSR, GP, built by SPP Shipbuilding for Bulk Malta.

PERSEVERANCE, a 30,060 dwt bulk carrier, BC-A, TCM, GRAB 20, AB-CM, CSR, built by Tsuji H I for Naess Dispatch Shipping.
OCEAN SCORPIO, 44,163 gt / 81,687 dwt, BC-A, GRAB 20, AB-CM, BWE, CSR, GP, built by Yangfan Group for Ocean Scorpio Navigation

ORHAN, 23,638 gt / 35,139 dwt, BC-A, TCM, GRAB 20, BWE, BWT, CSR, AB-CM, built by Yeosu Ocean for Orhan Maritime

ORIENT GLORY, 22,927 gt / 32,419 dwt, BC-A, TCM, GRAB 25, CSR, AB-CM, GP, built by Qingdao Beihai Shipbuilding for Bokwang Shipping

PACIFIC CONCORD, 94,866 gt / 180,032 dwt, BC-A, TCM, SH-DLA, GRAB 25, BWE, CSR, AB-CM, GP, built by Qingdao Yangfan for Concord Shipping

PERSEVERANCE, 19,999 gt / 30,060 dwt, BC-A, TCM, GRAB 20, CSR, AB-CM, built by Tsuji H I for Naess Dispatch Shipping

SANTA ADRIANA, 40,962 gt / 77,040 dwt, BC-A, TCM, GRAB 20, CSR, AB-CM, ENViro, GP, built by Oshima Shipbuilding for Compania Flor De Vapores

STAR JING, 36,295 gt / 63,800 dwt, BC-A, TCM, GRAB 20, CSR, AB-CM, built by Taizhou Kouan Shipbuilding for Norr Systems

TARAKAN EXPRESS, 54,550 gt / 70,382 dwt, ENViro, GP, built by Jiangsu New Yangzi Shipbuilding for Tarakan Express

VALE SHINAS, 201,336 gt / 400,285 dwt, NBLES, PORT, TCM, SH, SH-DLA, AB-CM, GP, built by Jiangsu Rongsheng H I for Vale Shinas Maritime Transportation

VALLEY STAR, 107,162 gt / 205,123 dwt, BC-A, TCM, GRAB 25, CSR, AB-CM, built by Qingdao Yangfan Shipbuilding for CLC Ship Chartering - VII

YANGTZE XING XIU, 45,271 gt / 81,602 dwt, BC-A, TCM, GRAB 25, CSR, built by CSSC Guangzhou Longxue Shipbuilding for Xingxiu Shipping

CONTAINERSHIPS

APL BOSTON, 8,400 teu, NBLES, TCM, SH, ENViro (EP2020), GP, SHCM, built by Daewoo Shipbuilding & Marine Engineering for Nol Liner

APL NEW YORK, 8,400 teu, NBLES, TCM, SH, ENViro (EP2020), GP, SHCM, built by Daewoo Shipbuilding & Marine Engineering for Triton Shipping

COSCO FRANCE, 13,360 teu, NIBS, TCM, FL 30, SH, SH-DLA, ES, SHCM, built by Nantong Cosco Khi Ship Engineering for Cosco France Shipping

EVER LEGEND, 8,000 teu, TCM, FL 25, SH, BWE, BWT, ENViro, SHCM, built by Samsung H I for Evergreen Marine

EVER LEGION, 8,000 teu, TCM, FL 25, SH, BWE, BWT, ENViro, SHCM, built by Samsung H I for Evergreen Marine

EVER LIVING, 8,488 teu, TCM, FL 25, SH, BWE, BWT, ENViro, SHCM, built by CSBC for Evergreen Marine

KESTREL, 1,800 teu, TCM, SH, built by CSBC for Hsinchu’s Refo Shipping

NYK HERCULES, 13,000 teu, NIBS, FL 25, SH, SH-DLA, BWT+ ENViro, GP, SHCM, built by Samsung H I for New Container No. 66 Shipping

OOCL CHONGQING, 13,000 teu, NIBS, FL 25, SH, SH-DLA, BWT+ ENViro, GP, SHCM, built by Samsung H I for Newcontainer No. 67 Shipping

PELICAN, 1,800 teu, TCM, SH, built by CSBC for Taichung Refo Shipping

YM UNICORN, 8,240 teu, NIBS, TCM, FL 25, SH, SH-DLA, ES2020, GP, SHCM, built by CSBC for Yang Ming Marine Transport

GAS CARRIERS

G. ARETE, 82,000 m³, NBLES, FL 30, SH, ENViro, GP, SHCM, built by Hyundai H I for Paegi Shipholding

GASLOG SKAGEN, 155,000 m³, SH, SH-DLA, SHCM, RES, NIBS, PORT, DFD, TCM, ENViro+, GP, built by Samsung H I for Gas Six

GASLOG SYDNEY, 155,158 m³, DFD, NIBS, PORT, TCM, SH, SH-DLA, ENViro+, RES, SHCM, built by Samsung H I for Gas-Five
OFFSHORE

Column Stabilized Accommodation Units
OOS PROMETHEUS, 35,144 gt, built by Yantai CIMC Raffles Offshore for Ocean Prospector

Column Stabilized Drilling Units
WEST ESPERANZA, 15,839 gt, built by Keppel Fels for Seadrill Esperanza

Drillships
NOBLE GLOBETROTTER II, 35,676 gt, Ice Class IA Hull only, 6DPS-3, built by STX Dalian H I for Noble Drilling Holding

Fixed Platforms
BAWG, built by Cuel Limited for Chevron Thailand Exploration & Production
BETY, built by Cuel Limited for Chevron Offshore
KPWH, built by Cuel Limited for Chevron Thailand Exploration & Production
MAWE, built by Cuel Limited for Chevron Offshore
NPWO, built by Cuel Limited for Chevron Thailand Exploration & Production
PDWC, built by Cuel Limited for Chevron Thailand Exploration & Production
PLWK, built by Cuel Limited for Chevron Thailand Exploration & Production
SGWD, built by Cuel Limited for Chevron Thailand Exploration & Production
STWA, built by Cuel Limited for Chevron Thailand Exploration & Production
YAWJ, built by Cuel Limited for Chevron Thailand Exploration & Production

Floating Offshore Installations
KAKINADA FLOATING DOCK NO. 1, 33,141 gt, built by Chengxi Shipyard for Sembmarine Kakinada

Self Elevating Drilling Units
AOD III, 10,429 gt, built by Keppel Fels for Asia Offshore Rig 3
ARABDRILL 50, 10,596 gt, built by Keppel Fels for Arabian Drilling
HAKURYU-11, 10,860 gt, built by Keppel Fels for Japan Drilling
LAURUS, 10,430 gt, built by Keppel Fels for Oro Negro Primus
PAPALOAPAN, 7,395 gt, built by Keppel Amfels for Perforadora Central
PETROBRAS 60, 7,576 gt, built by Consorcio Rio Paraguacu for Petrobras Netherlands
UMW NAGA 4, 10,596 gt, built by Keppel Fels for UMW Standard Drilling

Self Elevating Units
JB 118, 6,873 gt, Wind IMR, built by China Merchants H I for Self Elevating Platforms

Single Point Moorings
IOCL PARADIP SPM II, built by SBM Atlantia for Indian Oil Corporation

MISCELLANEOUS

Barges
2013, 3,259 gt, built by Corn Island Shipyard for Marinex Construction
ASL OFFSHORE 1, 6,221 gt, built by PT ASL Shipyard for PT Agus Suta Lines
BAHARI SETYA II, 2,207 gt, built by Yangzhou Yuanhang Shipyard for PT Armada Bahari Nusantara

GasLog Skagen, a 155,000 m³ gas carrier, SH, SH-DLA, SHCM, RES, NIBS, PORT, DFD, TCM, ENVIRO+, built by Samsung H I for Gas Six.

STENAWECO GLADYS W, a 49,995 dwt tanker, VEC, TCM, BWT+, CSR, AB-CM, SPMA, built by STX Offshore & Shipbuilding for Sterling Ocean Shipping III.
BAHARI SETYA III, 2,207 gt, built by Yangzhou City Jiangdu Shipyard for PT Armada Bahari Nusantara

BAHARI SETYA IV, 2,207 gt, built by Yangzhou City Jiangdu Shipyard for PT Armada Bahari Nusantara

CPP601, 22,027 gt, built by Nantong Tongde Shipbuilding & Repair for China Pipeline Marine Engineering

EWAN 37, 2,305 gt, built by Nanjing Nanjiang Shipbuilding for Ewan Marine

EWAN 39, 2,305 gt, built by Nanjing Nanjiang Shipbuilding for Ewan Marine

FC. TRANSFERINDO PERDANA-I, 2,609 gt, built by PT Karya Teknik Utama for PT Transferindo Perdana

FOTB 01, 3,168 gt, built by Nanjing Dongze Shipyard for PT Harapan Bahtera Internusa

GOLD TRANS 3006, 3,071 gt, built by Yangzhou Yuanhang Shipyard for PT Trans Power Marine

GOLD TRANS 3007, 3,071 gt, built by Yangzhou Yuanhang Shipyard for PT Trans Power Marine

GOLD TRANS 3008, 3,071 gt, built by Yangzhou Yuanhang Shipyard for PT Trans Power Marine

GOLD TRANS 3009, 3,071 gt, built by Yangzhou Yuanhang Shipyard for PT Trans Power Marine

HAI HANG 10, 1,565 gt, built by PT Sumatera Maju Jaya for Sempurna Barge

HB044002, 3,629 gt, built by Shanghai Zhenhua H I for Hidrovias do Brasil

HB044004, 3,629 gt, built by Shanghai Zhenhua H I for Hidrovias do Brasil

HB044006, 3,629 gt, built by Shanghai Zhenhua H I for Hidrovias do Brasil

HB044008, 3,629 gt, built by Shanghai Zhenhua H I for Hidrovias do Brasil

HB044010, 3,629 gt, built by Shanghai Zhenhua H I for Hidrovias do Brasil

HB044012, 3,629 gt, built by Shanghai Zhenhua H I for Hidrovias do Brasil

HB044014, 3,629 gt, built by Shanghai Zhenhua H I for Hidrovias do Brasil

HB044016, 3,629 gt, built by Shanghai Zhenhua H I for Hidrovias do Brasil

HB044018, 3,629 gt, built by Shanghai Zhenhua H I for Hidrovias do Brasil

HB044020, 3,629 gt, built by Shanghai Zhenhua H I for Hidrovias do Brasil

HB044022, 3,629 gt, built by Shanghai Zhenhua H I for Hidrovias do Brasil

HB044024, 3,629 gt, built by Shanghai Zhenhua H I for Hidrovias do Brasil

HB044026, 3,629 gt, built by Shanghai Zhenhua H I for Hidrovias do Brasil

HB044028, 3,629 gt, built by Shanghai Zhenhua H I for Hidrovias do Brasil

HB044030, 3,629 gt, built by Shanghai Zhenhua H I for Hidrovias do Brasil

HB044032, 3,629 gt, built by Shanghai Zhenhua H I for Hidrovias do Brasil

HESA 5412-01, 3,612 gt, built by Taizhou Sanfu Ship Engineering for PT Berkah Rizky Anugerah Mulia

HESA 5412-02, 3,612 gt, built by Taizhou Sanfu Ship Engineering for PT Berkah Rizky Anugerah Mulia

IB 914, 2,260 gt, GP, built by COSCO (Qidong) Offshore for Bam International & Clough Project Australia

IB 924, 2,291 gt, built by COSCO (Qidong) Offshore for Bam International & Clough Project Australia

LMN 306, 3,071 gt, built by Yangzhou Topniche Shipbuilding for PT Lumena Mandiri Nusantara

LMN 316, 4,084 gt, built by Yangzhou Topniche Shipbuilding for PT Lumena Mandiri Nusantara

LMN 336, 4,084 gt, built by Yangzhou Topniche Shipbuilding for PT Lumena Mandiri Nusantara

MARGO DALE, 12,832 gt, built by Signal International for Kirby

MARINA BAY 108, 3,233 gt, built by Yizheng Xinyang Shipbuilding for PT Pelayaran Mitra Samudera Abadi

MARMAC 303, 4,262 gt, built by Signal International for Marmac

MBP 1503, 7,043 gt, built by Nanjing Dongze Shipyard for PT Maritim Barito Perkasa

DODO, a 39,017 dwt bulk carrier, BC-A, TCM, GRAB 20, AB-CM, CSR, ENVIRO, GP, built by Hyundai Mipo Dockyard for Dodo Maritime.

COSCO FRANCE, a 13,360 teu containership, NIBS, TCM, FL 30, SH, SH-DLA, ES, SHCM, built by Nantong Cosco Khi Ship Engineering for Cosco France Shipping.

APL NEW YORK, an 8,400 teu containership, NBLES, TCM, SH, ENVIRO (EP2020), GP, SHCM, built by Daewoo Shipbuilding & Marine Engineering for Triton Shipping.
STARNAV PERSEUS, a 4,427 gt offshore supply vessel, built by Detroit Brasil for Starnav Servicos Maritimos.

OKKO, a 366 gt yacht, built by Mondo Marine for Rouge Yachting.

USNS MONTFORD POINT, a 58,265 gt heavy lift vessel, built by General Dynamics NASSCO for Military Sealift Command.

MBP 1505, 7,043 gt, built by Nanjing Dongze Shipyard for PT Maritim Barito Perkasa
MBP 1506, 7,043 gt, built by Nanjing Dongze Shipyard for PT Maritim Barito Perkasa
MITRA 28, 3,066 gt, built by Nantong Jinjiang Shipbuilding & Repairing for PT Kartika Cahaya Semesta
NUSANTARA 3004, 3,256 gt, built by PT Marcopolo Shipyard for PT Pelayaran Nasional Bina Buana Raya
NUSANTARA 3005, 3,279 gt, built by PT Marcopolo Shipyard for PT Pelayaran Nasional Bina Buana Raya
PARTA JAYA 3008, 3,071 gt, built by Nanjing Yonghua Shipbuilding for JK Orient
PB 3101, 4,109 gt, built by Yangzhou Topnich Marketing for PT Wsh Global Mandiri
PERDANA ENDURANCE, 10,445 gt, built by Xiamen Shipbuilding Industries for Perdana Saturn
PERDANA EXCELSIOR, 10,445 gt, built by Xiamen Shipbuilding Industries for Perdana Saturn
REBECCA LILY, 1,217 gt, built by Nantong Gangzha Shipping Manufacturing for Sinosin Sentosa
SEAWAYS 23, 3,367 gt, built by PT Prostar for Towage & Salvage Contractors
SOEKAWATI 326, 3,071 gt, built by Nanjing Yonghua Shipbuilding for Sinosin Sentosa
SOEKAWATI 368, 3,093 gt, built by Yangzhou Topniches Shipbuilding for PT Pelayaran Borneo Karya Mandiri
SOEKAWATI 2588, 2,212 gt, built by Nanjing Ningxu Shipbuilding for PT Pelayaran Borneo Karya Swadiri
SOEKAWATI 2589, 2,212 gt, built by Nanjing Ningxu Shipbuilding for PT Pelayaran Borneo Karya Swadiri
SPA 27006, 2,413 gt, built by PT Boston Oriental Shipbuilding & Shipyard for PT Samudra Pratama Abadi
T-17, 10,731 gt, built by Cosco Nantong Shipyard for Seadrill Tender Rig
TERAS 3712, 6,844 gt, built by Jiangsu Hongqiang Marine H I for Teras 375
TERAS 3713, 6,844 gt, built by Jiangsu Hongqiang Marine H I for Teras 336
TERAS 3714, 6,844 gt, built by Jiangsu Hongqiang Marine H I for Teras 336
TERAS 3715, 6,844 gt, built by Jiangsu Hongqiang Marine H I for Teras 336
TERAS 3716, 6,844 gt, built by Jiangsu Huatai Shipbuilding for Teras 336
TGH 2517, 2,208 gt, built by Nanjing Ding Feng Shipbuilding for Putra Bulan Shipping & Trading
TIRTA AMARTA 9, 1,596 gt, built by PT Boston Oriental Shipbuilding & Shipyard for PT Boston Oriental Shipbuilding & Shipyard
TUHAT KENANGAN 03, 1,407 gt, built by PT Boston Oriental Shipbuilding & Shipyard for PT Pelayaran Bahari Harapan Permai
TWM 53-230, 1,475 gt, built by Taizhou Xing Gang Shipbuilding for Tiong Woon Marine
TWM 54-250, 2,305 gt, built by Taizhou Xing Gang Shipbuilding for Tiong Woon Marine
TWM 55-280, 3,374 gt, built by Taizhou Xing Gang Shipbuilding for Tiong Woon Marine
WINBUILD 1495, 4,440 gt, built by Nantong Tiannan Shipyard for Poet Shipbuilding & Engineering
WINBUILD 3803, 3,651 gt, built by Wuxue Janda Shipbuilding for Poet Shipbuilding & Engineering
ZEUS 251, 2,305 gt, built by Zhenjiang Yong An Shipyard for Zeus Marine
ZEUS 252, 2,305 gt, built by Zhenjiang Yong An Shipyard for Zeus Marine
ZHPL 4, 40,612 gt, Ice Class D0, built by Shanghai Zhenhua H I for Zhenhua ZHPL4
Government Vessels

USNS MONTFORD POINT, 58,265 gt, MAN, NBLES, built by General Dynamics NASSCO for Military Sealift Command

YP 707, 305 gt, built by C & G Boat Works for Naval Sea Systems Command

Tugs, Workboats and OSVs

JASCON 55, 3,690 gt, HELIDK, Fire Fighting Vessel Class 1, built by Guangzhou Hangtong Shipbuilding & Shipping for Sea Angel

HOS RED DAWN, 3,911 gt, Fire Fighting Vessel Class 1, built by Eastern Shipbuilding for Hornbeck Offshore Operators

CHARLIE COMEAUX, 3,242 gt, Fire Fighting Vessel Class 1, built by North American Shipbuilding for Galliano Marine Service

KING JESUS, 1,461 gt, Fire Fighting Vessel Class 1, built by Guangdong Yuexin Ocean Engineering for Project Masters Offshore

LOGINDO ENERGY, 3,594 gt, Fire Fighting Vessel Class 1, built by Fujian Southeast Shipyard for PT Logindo Samudramakmur

MANDRIÃO, 3,451 gt, Fire Fighting Vessel Class 1, built by Poet Shipbuilding & Engineering for Atlantic Offshore Services

MP PREVAIL, 2,696 gt, built by PT Nanindah Mutiara Shipyard for PT Pelayaran Nasional Bina Buana Raya

MV BUTLER SPIRIT, 2,908 gt, built by Fujian Southeast Shipyard for A.G. Butler

MV TEMILE, 3,602 gt, built by Fujian Mawei Shipbuilding for CS Offshore

NEYA III, 2,908 gt, built by Fujian Southeast Shipyard for Slok Nigeria

OCEAN JADE, 1,081 gt, built by Jiangsu Wuxi Shipyard for Ocean Engineering & Trading

OCEAN MORGANITE, 2,207 gt, Safety Standby Service GR C 19, built by Poet Shipbuilding & Engineering for Samson Maritime

OCEAN STAR, 3,362 gt, built by Guangzhou Hangtong Shipbuilding & Shipping for Micoperi

CHARLIE COMEAUX, a 3,242 gt offshore supply vessel, Fire Fighting Vessel Class 1, built by North American Shipbuilding for Galliano Marine Service.

HOS RED DAWN, a 3,911 gt offshore supply vessel, built by Eastern Shipbuilding for Hornbeck Offshore Operators.

JASCON 55, a 3,690 gt offshore supply vessel, HELIDK, Fire Fighting Vessel Class 1, built by Guangzhou Hangtong Shipbuilding & Shipping for Sea Angel.
PACIFIC DILIGENCE, a 6,641 gt offshore supply vessel, Ice Class C0, Fire Fighting Capability, SPS, DPS-2, ENVIRO, GP, built by Singapore Technologies Marine for Swire Pacific Offshore Services.

PACIFIC DILIGENCE, 6,641 gt, Ice Class C0, Fire Fighting Capability, SPS, DPS-2, ENVIRO, GP, built by Singapore Technologies Marine for Swire Pacific Offshore Services.

PARAKAN, 1,727 gt, Fire Fighting Vessel Class 1, DPS-1, built by Fujian Southeast Shipyard for PT Baruna Raya Logistics.

POSH GANNET, 3,553 gt, GR B 145, Fire Fighting Vessel Class 1, Oil Recovery Capability Class 1, SPS, DPS-2, built by Poet Shipbuilding & Engineering for Maritime Charlie.

POSH PERSISTENCE, 3,522 gt, Fire Fighting Vessel Class 1, SPS, DPS-2, built by PT Nanindah Mutiara Shipyard for Condor Shipping.

PACIFIC DEFIANCE, 6,641 gt, Ice Class C0, Fire Fighting Capability, SPS, DPS-2, ENVIRO, GP, built by DDW-Paxocean Shipyard for Swire Pacific Offshore Operations.

PACIFIC DILIGENCE, 6,641 gt, Ice Class C0, Fire Fighting Capability, SPS, DPS-2, ENVIRO, GP, built by Singapore Technologies Marine for Swire Pacific Offshore Services.

TERASEA HAWK, a 3,513 gt offshore supply vessel, Fire Fighting Vessel Class 1, Oil Recovery Capability Class 1, TCM, built by Japan Marine United for Posh Terasea (II).

SMIT SERAYA, a 1,463 gt offshore supply vessel, Fire Fighting Vessel Class 1, built by Guijiang Shipbuilding for Smit Singapore.

SABLE, 3,806 gt, Fire Fighting Vessel Class 1, Oil Recovery Capability Class 2, DPS-2, built by Remontowa Shipbuilding for Duh Boats 2 Partnership.

SEALINK 178, 5,174 gt, Fire Fighting Vessel Class 1, Oil Recovery Vessel Class 1, DPS-2, ENVIRO, GP, built by Jiangsu Zhenjiang Shipyard for Seabright.

SK LINE 76, 1,679 gt, Fire Fighting Vessel Class 1, DPS-2, built by Fujian Southeast Shipyard for Nam Cheong International.

SK LINE 77, 1,679 gt, Fire Fighting Vessel Class 1, DPS-2, built by Fujian Southeast Shipyard for Nam Cheong International.

SOPHIA MARIA, 2,908 gt, Fire Fighting Vessel Class 1, DPS-2, built by Fujian Southeast Shipyard for Slok Nigeria.

TERASEA HAWK, 3,513 gt, Fire Fighting Vessel Class 1, Oil Recovery Capability Class 1, TCM, built by Japan Marine United for Posh Terasea (II).

UNGARAN, 1,727 gt, Fire Fighting Vessel Class 1, DPS-1, built by Fujian Southeast Shipyard for PT Swiber Berjaya.

VEGA INRUDA, 1,727 gt, Fire Fighting Vessel Class 1, Oil Recovery Vessel Class 2, DPS-1, built by Fujian Southeast Shipyard for Vega Inruda.

Yachts

ANNASTAR, 492 gt, built by Westport Shipyard for Annastar Ventures.

AURORA 2013, 414 gt, built by Xiamen South Coast Marine Yacht Building for MV Aurora Holdings.

AXIOMA, 1,620 gt, built by Ursa Tersanesi for Red Square Maritime Limited.

CALEX, 492 gt, built by Westport Shipyard for Hotel Whiskey.

CRAZY ME, 715 gt, built by Heesen Yacht Builders for Yasmina Yachts.

ILERIA, 707 gt, built by Proteksan Turkuaz Yat San for Phoenix Travel.

LILIYA, 338 gt, built by San Lorenzo for Lilia Yacht.

OCEAN PARADISE, 710 gt, built by Azimut-Benetti for Future Trillion Enterprises.
VENTURA, a 496 gt yacht, built by Heesen Yacht Builders for Aviemor Assets.

ANNASTAR, a 492 gt yacht, built by Westport Shipyard for Annastar Ventures.

ILERIA, a 707 gt yacht, built by Proteksan Turkuaz Yat San for Phoenix Travel.

VENTURA, a 496 gt yacht, built by Heesen Yacht Builders for Aviemor Assets.
We Welcome Your Thoughts

Activities is intended to provide our members and clients with ABS views, news and research. Editorial content is gathered from ABS engineering and field offices around the globe.

To comment, please contact Jean Gould, Vice President, External Affairs, at tel: 1-281-877-5850 or email CorporateCommunications@eagle.org.

The mission of ABS is to serve the public interest as well as the needs of our clients by promoting the security of life and property and preserving the natural environment.

ON THE COVER

The JACK ST. MALO, a column stabilized unit, built by Samsung Heavy Industries in South Korea for Chevron Corp. Photo courtesy of Chevron.