GUIDE FOR
BRIDGE DESIGN AND NAVIGATIONAL EQUIPMENT/ SYSTEMS
MAY 2019

American Bureau of Shipping
Incorporated by Act of Legislature of the State of New York 1862

© 2019 American Bureau of Shipping. All rights reserved.
1701 City Plaza Drive
Spring, TX 77389 USA
Foreword (1 May 2019)

This Guide supersedes the previously published Guide for One Man Bridge Operated (OMBO) Ships based on the IMO decision to discontinue the night time one man bridge experiment and shift emphasis to bridge design and navigational systems.

The requirements for the functionality of the bridge design and layout, and the navigational equipment/systems laid down in this Guide are intended to improve and optimize the work environment within the bridge area and enhance the navigational capabilities, and safety of a vessel. The requirements for vessels fitted with an integrated bridge system for navigational purpose is also included in this Guide.

The notations NBL, NBLES, NBLES+ and NIBS are introduced to replace the previous OMBO notation and to define the expanded scope of the subject Guide.

Effective May 1, 2019, this Guide is revised to modify the existing NBLES Notation and incorporate the new NBLES+ notation.
CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>1</th>
<th>General... 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Application.. 7</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>... 7</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>... 7</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>... 7</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Operational Assumptions.. 7</td>
</tr>
<tr>
<td></td>
<td>3.1</td>
<td>... 7</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>... 7</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Optional Notations... 7</td>
</tr>
<tr>
<td></td>
<td>5.1</td>
<td>Notation NBL (Navigational Bridge Layout).................................... 7</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>Notation NBLES and NBLES+ (Navigational Bridge Layout and Equipment/systems)................. 7</td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td>Notation NIBS (Navigational Integrated Bridge System).................... 8</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Regulations.. 8</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Flag Administration and National Authorities............................... 8</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Definitions (December 2003).. 8</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Plans and Data to be Submitted.. 10</td>
</tr>
<tr>
<td></td>
<td>13.1</td>
<td>Applicable to NBL, NBLES, NBLES+ and NIBS Notations.................. 11</td>
</tr>
<tr>
<td></td>
<td>13.2</td>
<td>Applicable to NBLES, NBLES+ and NIBS Notations...................... 11</td>
</tr>
<tr>
<td></td>
<td>13.3</td>
<td>Applicable to NIBS Notation.. 12</td>
</tr>
</tbody>
</table>

SECTION 2 Requirements for Notation NBL (Navigation Bridge Layout)........ 13

1		General... 13
3		Equipment Design and Construction.. 13
	3.1	General (December 2003).. 13
	3.2	Fault Isolation.. 13
	3.3	Replacement of Components.. 13
	3.4	Self-support... 13
	3.5	Configuration of Devices... 13
	3.6	Instruments and Controls.. 13
5		Bridge Arrangement and Working Environment................................ 14
	5.1	Fields of Vision... 14
5.2 Control of Vessel..14
5.3 Routes and Working Clearances..................................... 15
5.4 Clear Height...16
5.5 Workstations.. 16
5.6 Other Considerations...17
5.7 Tests and Sea Trials.. 18

SECTION 3 Requirements for Notation NBLES (Navigational Bridge Layout and Equipment/Systems) and Notation NBLES+........... 19
1 General...19
3 Documentation, Type Approval and Performance Standards of Navigational Equipment..19
 3.1 Documentation..19
 3.2 Type-approved Equipment...19
 3.3 IMO's Performance Standards...19
5 Manual Mode of Operation... 19
7 Alarm Systems..19
 7.1 Characteristics..19
 7.2 Audible Alarm Circuits...19
 7.3 Acknowledgment...20
 7.4 Disconnection and Resumption of Functions.................20
 7.5 Built-in Testing...20
9 Computerized Equipment... 20
11 Power Supply..20
 11.1 Sources..20
 11.2 Emergency Service..20
 11.3 Loss of Power..20
13 Navigational Systems...20
 13.1 Heading Information System (December 2003)..............21
 13.2 Steering System..21
 13.3 Speed Measuring System (December 2003)...................22
 13.4 Depth Measuring System (December 2003)................... 22
 13.5 Radar System..22
 13.6 Automatic Traffic Surveillance System (December
 2003)..22
 13.7 Position Fixing System..23
 13.8 Watch Monitoring and Alarm Transfer System...............23
 13.9 Route Planning...24
 13.10 Vessel's Automatic Identification System (December
 2003)..24
15 Propulsion Engine/thruster Controls...24
17 Automatic Telephone System (December 2003)......................24
 17.1 ...24
 17.2 ...25
SECTION 1 General

1 Application

1.1 The requirements of this Guide are applicable to vessels possessing valid SOLAS certificates, and having the bridge so designed and equipped as to enhance the safety and efficiency of navigation. When a vessel is designed, built and surveyed in accordance with the requirements of this Guide, and when found satisfactory, a classification notation as specified in 1/5 will be granted. Application of the requirements of this Guide is optional.

1.2 The composition and qualifications of the crew remains the responsibility of the flag Administrations.

1.3 (December 2003) The design and layout of navigational equipment is to be based on sound ergonomic principles. The ABS Guidance Notes on Ergonomic Design of Navigation Bridges may be used as a supplement.

3 Operational Assumptions
The requirements contained in this Guide are based on the following assumptions:

3.1 Plans for emergencies and the conditions under which the vessel is intended to operate are clearly defined in an operational manual acceptable to the flag Administration. The manual should clearly state the bridge crew composition required under any particular set of circumstances.

3.2 The requirements of the International Conventions on Standards of Training, Certification and Watchkeeping for Seafarers (STCW) and other applicable statutory regulations are complied with.

5 Optional Notations

5.1 Notation NBL (Navigational Bridge Layout)
Where requested by the Owner, a vessel having its bridge found to comply with the requirements in Sections 1 and 2 of this Guide, as applicable, and which has been constructed and installed under survey by the Surveyor, will be assigned the notation NBL.

5.2 Notation NBLES and NBLES+ (Navigational Bridge Layout and Equipment/systems)
(1 May 2019)
Where requested by the Owner, a vessel which is found to comply with the requirements specified in Sections 1 through 3 of this Guide and which has been constructed and installed under survey by the Surveyor, will be assigned the notation NBLES or NBLES+.
5.3 **Notation NIBS (Navigational Integrated Bridge System)**
Where requested by the Owner, a vessel which is fitted with an integrated bridge system (IBS) for navigational purpose, is found to comply with the requirements specified in Sections 1 through 4 of this Guide, and which has been constructed and installed under survey by the Surveyor, will be assigned the notation **NIBS**.

7 **Regulations**
For the purpose of this Guide, the International Regulations for Preventing Collisions at Sea, and all other relevant Regulations relating to radio and safety of navigation required by Chapters IV and V of 1974 SOLAS, as amended, are to be complied with. Valid statutory certificates issued by the pertinent flag Administration are to be provided onboard the vessel and made available to the Surveyor upon request.

9 **Flag Administration and National Authorities**
Vessel owners or other interested parties are urged to consult the flag Administration and relevant National Authorities concerning required manning levels on the bridge and any additional requirements which may be imposed by them.

11 **Definitions (December 2003)**
The following list provides definitions of the terms used in this Guide:

- **Acquisition** - The selection of those target vessels requiring a tracking procedure and the initiation of their tracking.
- **Alarm** - A visual and audible signal indicating an abnormal condition.
- **ARPA** - Automatic Radar Plotting Aid.
- **Back-up Navigator** - Any individual, generally an officer, who has been designated by the vessel master to be on call if assistance is needed on the navigation bridge.
- **Bridge** - That area from which the navigation and control of the vessel is exercised, including the wheelhouse and bridge wings.
- **Bridge Wings** - Those parts of the bridge on both sides of the vessel's wheelhouse which, in general, extend to the vessel's side.
- **Bridge Wing Workstation** - Workstation from which the vessel can be maneuvered, and operated during unmooring and mooring, lock passage, taking or dropping the pilot, etc.
- **CPA** (Closest Point of Approach) - The shortest target vessel-own vessel calculated distance that will occur in case of no change in course and speed data.
- **Catwalk** - Extension of a deck that is wide enough to allow the passage of a man.
- **Chart Area** - Part of the wheelhouse situated and equipped for adequate performance of voyage planning/plotting activities.
- **Commanding View** - View without obstructions which would interfere with the navigator's ability to perform his immediate task.
- **Conning Position** - Place on the bridge with a commanding view and which is used by navigators, including pilots, when monitoring, maneuvering and controlling a vessel.
- **Course** - The horizontal direction in which a vessel is steered or intended to be steered, expressed as an angular distance from north. Course applies to direction over the water.
Cross track Alarm – Comparison of the vessel’s position with the track (control error).

Display - Means by which a device presents visual information to the navigator, including conventional instrumentation

ECDIS - (Electronic Chart Display and Information System) A system which displays hydrographic information and the vessel's position along a pre-planned route.

Ergonomics - The study and design of working environments and their components, work practices, and work procedures for the benefit of the worker’s productivity, health, comfort, and safety. Application of the human factor in the analysis and design of equipment and working environment

FOV (Field of Vision) - Angular size of a scene that can be observed from a position in the vessel's bridge.

GLONASS - Global Orbiting Navigating Satellite Systems.

GMDSS - Global Maritime Distress and Safety System.

Heading – The horizontal direction in which the longitudinal axis of a ship actually points or heads at any instant, expressed in angular units from a referenced direction.

Heading Monitor – Comparison of the heading source in use with a second independent heading sensor.

Helmsman - Person who steers the vessel.

Integrated Bridge System (IBS) - This system is defined as a combination of systems which are interconnected in order to allow centralized access to sensor information or command/control from workstations, with the aim of increasing safe and efficient vessel's management by suitable qualified personnel. For the purpose of this Guide, the integrated bridge system pertains only to aspects dealing with navigational, monitoring/alarming and communication functions as covered in this Guide.

Lookout - Activity carried out by sight and hearing as well as by all available means appropriate in the prevailing circumstances and conditions so as to make a full appraisal of the situation and of the risk of collision.

Main Workstation - See “navigation and traffic surveillance/maneuvering workstation”.

Manual Steering Workstation - Workstation from which the vessel can be steered by a helmsman, possibly designed for working in a seated position.

Monitoring - Act of constantly checking equipment and environment in order to detect any changes.

Monitoring Workstation - Workstation from where equipment and environment can be checked constantly; when several persons are working on the bridge it serves for relieving the navigator at the navigation and traffic surveillance/maneuvering workstation and/or for carrying out advisory functions by the master or pilot.

Navigation - All tasks relevant for deciding, executing and maintaining course and speed in relation to waters and traffic.

Navigator - Person navigating, operating bridge equipment and maneuvering the vessel.

Navigation and Traffic Surveillance/maneuvering Workstation - Main workstation at which the vessel's course, speed and position in relation to the waters and traffic can be controlled and monitored, and where communication relevant to navigation can be performed. It is generally conceived for working in seated or standing position with optimum visibility and integrated presentation of information and
operating equipment. It shall be possible from this location to operate the vessel safely, in particular when a fast sequence of action is required.

NAVTEX - A narrow-band direct printing telegraph equipment for reception of navigational and meteorological warnings and urgent information to vessels.

Normal Sailing Conditions - When all systems and equipment related to navigation operate within design limits, and environmental conditions such as weather and traffic do not cause excessive workload to the officer of the watch.

Off Heading Alarm – Comparison of heading and preset heading (control error).

Officer of the Watch - Person responsible for safe navigating, operating of bridge equipment and maneuvering of the vessel.

Operating/Technical Manual – Manuals or operational instructions for equipment/systems installed on the bridge for the use of bridge personnel.

Position Monitor – Comparison of the position source in use with a second independent position sensor or source.

Primary Bridge Navigational Equipment/Systems - For the purpose of this Guide, equipment/systems essential for the performance of primary bridge navigational functions are: gyro compass, radar, position-fixing system and electronic chart system.

Public Rooms - Public rooms are those portions of the accommodations which are used for halls, dining rooms, lounges and similar permanently enclosed spaces. For the purpose of this Guide, the library, gymnasium, vessel's office and conference rooms need not be considered.

Radar Plotting - The whole process of target detection, tracking calculation, relative and true motion, course, speed and display of information

Route Planning Workstation - Workstation at which vessel's operations are planned (i.e., route planning, deck log, etc.) and where fixing and documenting all vessel's operation takes place.

Sea-going Vessel - Vessel navigating on the high seas, i.e. areas along coasts and from coast to coast.

TCPA - Time to Closest Point of Approach.

Track – The intended or desired horizontal direction of travel with respect to earth.

Tracking - The process of observing the sequential changes in the position of a target, to establish its motion.

Way-point - Any of various intermediate points on a route.

Wheelhouse - Enclosed area of the bridge.

Workstation - Position at which one, or several tasks constituting a particular activity are carried out.

13 Plans and Data to be Submitted

(2011) Relevant plans and data are to be submitted for approval and/or information as follows. Plans should generally be submitted electronically to ABS. However, hard copies will also be accepted.
13.1 Applicable to NBL, NBLES, NBLES+ and NIBS Notations (1 May 2019)

i) Arrangements of windows, including dimensions and angles of inclination, dimensions of frames, height above deck surface of upper and lower edges, type of glass, and details of clear view arrangements (wipers, fresh water wash, de-icing/ de-misting, sunscreens, etc.).

ii) Fields of vision from the bridge workstations, including any blind sectors caused by obstructions outside of the wheelhouse.

iii) Location and arrangement of workstations, including dimensions of consoles, layout of instrumentation and controls, handrails, seating, etc.

iv) Clearances between floor and ceiling, or between floor and the underside of ceiling mounted instruments, throughout the wheelhouse.

v) Arrangements for the general illumination of the bridge and the individual illumination of workstation instruments and controls.

vi) Details of wheelhouse ventilation and heating systems.

vii) Details of internal communication systems operable from the bridge.

viii) Arrangements/details of exterior catwalk in front of bridge windows.

ix) Details of non-slip flooring. See 2/5.6.5.

x) Details of wheelhouse doors, including hold-back arrangements. See 2/5.6.8.

xi) Location of toilet. See 2/5.6.7.

xii) Arrangements for drainage of bridge decks. See 2/5.6.6.

xiii) Arrangements/details as to the measures to be taken to minimize hazards to personnel. See 2/5.6.10.

13.2 Applicable to NBLES, NBLES+ and NIBS Notations (1 May 2019)

13.2.1 A list of navigational equipment. This is to include for each item the manufacturer's name and model number, together with copies of relevant type approval certificates.

13.2.2 A complete operational description of the relevant monitoring systems including a list of alarms and displays. This may be accomplished by means of simplified block diagrams of navigation equipment, internal communications systems and watch monitoring and alarm transfer systems, and central alarm panel (where provided) including a list of alarms.

13.2.3 A simplified one-line diagram of the relevant systems described in 3/13 through 19. This is to include power supplies to the bridge equipment, circuit protection ratings and settings, cable sizes, rating of connected loads, detailed description and interactions, etc.

13.2.4 Operating/technical manuals for the installed navigational equipment/systems. A single copy only is to be submitted for information. See 3/23.

13.2.5 Sea trial test schedule. A single copy only is to be submitted. See 3/25.
13.3 Applicable to NIBS Notation

13.3.1 Details and arrangements of the workstations and systems described in Section 4.

13.3.2 *(December 2003)* In addition to A13.2.5, the sea trial program is to include test details of the electronic chart display and information systems (EDCIS) and integrated bridge system (IBS).
SECTION 2 Requirements for Notation NBL (Navigation Bridge Layout)

1 General

Vessels complying with Sections 1 through 2 of this Guide, will be assigned the notation NBL (Navigation Bridge Layout).

3 Equipment Design and Construction

3.1 General (December 2003)

The design of navigational equipment is to be based on sound ergonomic principles in accordance with the ABS Guidance Notes on Ergonomic Design of Navigation Bridges, as applicable. Its construction is to be of robust, durable and flame retardant material incorporating the required degree of enclosure protection (i.e., IP 20 for bridge installation and IP 56 for open deck installation). The requirements in 3/3 are applicable to navigational related equipment required in this Guide.

3.2 Fault Isolation

Circuits are to be designed to permit the isolation of a fault while maintaining functionality of the remaining circuits or sub-components (i.e., using printed circuit cards, or modules, etc.) and are to allow the easy and safe replacement of the faulted portion of the circuit.

3.3 Replacement of Components

Replaceable components are to be designed and arranged so that it will not be possible to connect them incorrectly or use incorrect replacements.

3.4 Self-support

Workstations, panels, cabinets, etc., are to be secured to a solid foundation with sides and back suitably protected. They are to be self-supported, or be braced to the bulkhead or the ceiling. In case the last method is used, means of bracing is to be flexible to allow deflection of the deck without buckling the assembly structure.

3.5 Configuration of Devices

Alarms, displays and control devices are to be arranged in a functional and logical manner to allow the operator an easy and clear means of identification of each of the components or systems included therein. Grouping of like system alarms, displays, and devices, and the use of labels and color schemes are some of the methods to realize this intent. Precautions are to be taken to prevent the inadvertent operation of controls that may lead to critical situations, i.e., care in the identification and location of switches, activation controls, and handles, the use of recessed or covered switches and controls, and the arrangement for sequential operation.

3.6 Instruments and Controls

Instruments and controls are to be designed to permit easy and correct reading by day and night and so fitted as to minimize glare or reflection or being obscured by strong light. The following is applicable:
3.6.1 Digital Readout
Digital readout is not to be used where the reading changes rapidly so as to preclude the operator from reading its changing value (i.e., numbers change is effected by snap action rather than by continuous movement).

3.6.2 Circular Scale
For an index moving relative to a circular scale, the index is to move clockwise (or the scale is to move counterclockwise) for increasing readings.

3.6.3 Linear Scale
For an index moving relative to a linear scale, the index is to be horizontal or vertical and the pointer is to move to the right or upwards for increasing readings. Deviation from this norm will be considered for special applications such as for water depth measurements.

3.6.4 Distinction
Controls or combined controls/indicators are to be visually and tactually distinguishable from elements that only indicate (i.e., rectangular buttons may be used for control elements and round lights for indicator elements).

3.6.5 Mechanical Control
The shape of mechanical controls are to indicate the method of operation of the control. Rotary finite-position controls (e.g., stepped switches) are to have toggles or levers, whereas rotary continuous-position controls (rheostats) are to have knobs or wheels except the steering control.

3.6.6 Light Contrast
Instruments providing information are to be presented on background of high contrast, emitting as little light as possible by night. They are to be designed to show a light text on a dark non-reflecting background at night.

3.6.7 Illumination and Lighting
All instruments and controls are to be provided with means of illumination. Such illumination is to be adjustable to zero, except for the illumination of alarms and dimmer controls. Such items are to remain visible at all times.

For the illumination of displays and alarms, red light (wave length 620 nm or higher) is to be used.

5 Bridge Arrangement and Working Environment

5.1 Fields of Vision
5.1.1 General
Requirements found in Section 3-6-1, “Visibility” of the Marine Vessel Rules are to be complied with.

5.2 Control of Vessel
5.2.1 General
The relevant workstations are to be designed and positioned so that navigational and traffic surveillance/ maneuvering, docking and other tasks may be performed by the officer of the watch in cooperation with other persons manning individual workstations.

Workstations used for navigating and traffic surveillance/maneuvering, manual steering, voyage planning and communication are not to cover a working area with an axis longer than 15 m (49 ft 3 in.).
Further, where workstations are widely separated, talkback facilities are to be provided so that unhampered communications between workstations can be achieved under all operating conditions.

5.2.2 Conning Position *(December 2003)*
An adequate conning position is to be provided in close proximity to the forward center window and is to be arranged so as to enable the navigator(s) to watch the area immediately in front of the bridge superstructure and observe all relevant information required to maintain a safe course and speed of the vessel in narrow waters, harbor areas and during final passages without interfering with the tasks of the bridge personnel. The rudder, propeller, thrust, pitch and operational mode indicators, or other means to determine and display rudder angle, propeller revolutions, direction of thrust and, if applicable, the force and direction of lateral thrust and the pitch and operational mode, are all to be readable from the conning position(s).

However, if the view in the center-line is obstructed by large masts, cranes, etc., two additional conning positions giving a clear view ahead are to be provided, one on the port side and one on the starboard side of the center-line, no more than 5 m (16 ft 5 in.) apart from each other.

5.2.3 Navigation and Traffic Surveillance/Maneuvering Workstation
The navigation and traffic surveillance/maneuvering workstation is to be arranged so as to enable the officer of the watch to carry out the required tasks and to provide him with all necessary information so that he can carry out his functions from a seated or standing working position but without being restricted to a specific location. In addition, this workstation is to be designed, arranged and located within an area having sufficient space for not less than two operators, but which would allow the workstation to be operated efficiently by one.

5.2.4 Route Planning Workstation
The route planning workstation is to enable the navigator to plan the intended voyage without interfering with the actual navigation or maneuvering of the vessel.

5.2.5 Monitoring Workstation
From the monitoring workstation, it is to be possible to see and hear the persons at the navigation and traffic surveillance/maneuvering workstation and steering workstations.

5.2.6 Manual Steering Workstation
The workstation for manual steering is preferably to be located on the vessel’s center-line. If the workstation for manual steering is located off the center-line, special steering references are to be provided (e.g., sighting marks forward). If the view ahead is obstructed by large masts, cranes, etc., the steering workstation is to be located a distance to starboard of the center-line, sufficient to obtain a clear view ahead.

5.2.7 Docking Workstations
The workstations for docking of the vessel are to enable the navigator, together with a pilot, to observe all relevant external and internal operations which will affect the safe docking of the vessel. Talkback facilities are to be provided between the docking workstations and the wheelhouse when the distance from the wing extremity to the wheelhouse center-line is greater than 10 m (32 ft 10 in.).

5.3 Routes and Working Clearances
5.3.1 Across Wheelhouse *(1 July 2012)*
A clear route across the wheelhouse from bridge wing to bridge wing is to be provided and its width is to be at least 1.2 m (3 ft 11 in.). However, the width may be reduced to not less than 700 mm at any single point of obstruction subject to the following:
There is clear visibility for individuals on either side of the obstruction to see each other as they approach the area of reduced width,

the length of the obstruction along the passageway does not exceed 1 m (39.4 inches),

there is sufficient room on either side of the obstruction to allow one individual to step aside and allow another individual to pass through [i.e., at least 1.2 m (3 ft 11 in.)],

the above actions will not interfere with any crew member at a station required to be continuously manned, and

the attending Surveyor is satisfied that two (2) individuals traveling in opposite directions can pass through the area of reduced width with only a very brief pause by one of the two (2).

5.3.2 From Lower Decks
There are to be no obstructions between the points of entry to the bridge wings and wheelhouse from lower decks and the clear route required in 2/5.3.1.

5.3.3 Between Workstations
The distance between adjacent workstations is to be sufficient to allow unobstructed passage. To this end, the free passageway is to be at least 0.7 m (2 ft 4 in.) in width. The workstation operating area is to be part of the workstation and not of the passageway.

5.3.4 Front Passage
The distance from the front bulkhead, or from any workstation and installations placed against the front bulkhead, to any workstation or installations placed away from the bridge front is to be sufficient for two persons to pass each other. This distance is preferably to be 1 m (3 ft 3 in.) but in no case less than 0.8 m (2 ft 7 in.).

5.4 Clear Height
The clear ceiling height in the wheelhouse is to be designed with regard to the installation of overhead panels and instruments. To this end, the clear height between the bridge deck surface covering and the underside of the deck head beams is to be at least 2.25 m (7 ft 5 in.). The lower edge of deckhead mounted equipment is to be at least 2.1 m (6 ft 11 in.) above the deck in open areas, passageways and at standing workstations.

5.5 Workstations
5.5.1 General
Instruments providing visual information to more than one person on duty are to be located for easy viewing by all users concurrently, or if this is not possible, the instruments are to be duplicated. Instruments displaying information to more than one workstation may be located above the front windows if dimensions allow; such instruments are: vessel's heading, wind, water depth, speed, rate of turn, rudder angle, propeller revolutions (r/min), propeller pitch and time. Configuration and dimensions as outlined in 2/5.5.2 and 2/5.5.3 do not apply to radar consoles.

5.5.2 Configuration
In general, workstations are to be divided into two parts if possible:

Vertical Part: Instruments dealing with information/presentation of data are to be placed in the vertical part.

Horizontal Part: Controls of the relevant equipment are to be placed in the horizontal part.
5.5.3 Dimensions

i) **Height:** The height of workstations is not to interfere with the navigating bridge window’s view requirements found in 3-6-1/1.3.4 and 3-6-1/1.3.5 of the *Marine Vessel Rules:*

ii) **Width:** Based on sound ergonomic principles, the width of workstations designed for single person operation is not to exceed 1.6 m (5 ft 3 in.).

iii) **Chart Table:** The chart table is to be large enough to accommodate all chart sizes normally used internationally for marine traffic. The dimensions of the chart table are to be as follows: width, not less than 1.2 m (3 ft 11 in.); depth, not less than 0.85 m (2 ft 9 in.); height, not less than 0.9 m (2 ft 11 in.) and not more than 1 m (3 ft 3 in.). Additionally, the chart table is to be provided with 10 mm (3/8 in.) slits in front and back of the table to accommodate charts which are larger than the table.

5.5.4 Instruments and Controls

i) **General:** Instruments and controls are to be grouped according to their main functions; these are: navigating and traffic surveillance/maneuvering, and communication.

ii) **Line of Sight:** Each instrument and control is to be placed with its face normal to the navigator’s line of sight, or to the mean value if the navigator’s line of sight varies through an angle.

iii) **Glare:** To avoid glare, all instruments and controls are to be positioned relative to the operator considering the surrounding light sources.

iv) **Transparent Covers:** Transparent covers fitted over instrument(s) are to minimize reflections.

v) **Symbols/labels:** The purpose of each control is to be clearly illustrated by symbols where standard symbols have been internationally adopted, or indicated by a label in English.

5.6 Other Considerations

5.6.1 Lighting and Illumination

i) **General:** A satisfactory level of lighting is to be provided to enable personnel to complete required bridge tasks at sea and port, day time and night time. To this end, individual task areas are to have a greater luminance than the general lighting level.

ii) **Lighting in Dark Hours:** Relevant equipment fitted on the bridge is to be able to be discerned during hours of darkness. This is to be achieved via internally or externally located lighting. Red light is to be used to maintain dark adaptation whenever possible in areas or on items of equipment, other than the chart table, requiring illumination in the operational mode (see also 2/3.6.7). This is to include instruments and controls on the bridge wings.

Additionally, in order to prevent red lights in the wheelhouse from being mistaken for navigation lights by another vessel, indirect low level red lighting is to be fitted at deck level, especially for internal doors and staircases.

5.6.2 Heating Ventilating and Air Conditioning (HVAC) System

An adequate HVAC system is to be provided in order to maintain the temperature of the wheelhouse within the range of 14°C (57°F) to 30°C (86°F).

5.6.3 Sound Signals

Fixed vessel’s sound signals are to be placed as high as practicable and if possible, forward of the bridge. External sound signals from vessels and fog signals that are audible on open deck, are to be also audible inside the wheelhouse; to this end, a sound reception system (of a recommended frequency range of 70 to 700 Hz) is to be provided to reproduce such signals inside the
wheelhouse (the opening of doors or windows is generally not to be accepted as an equivalent solution).

5.6.4 Noise Levels

i) **General**: The noise level on the bridge is not to interfere with verbal communication, mask audible alarms or be uncomfortable to the bridge personnel. In this respect, the ambient noise level on the bridge in good weather is not to exceed 65 dB(A).

ii) **Others**: The noise of ventilation fans, engine intake fans and other noise sources are to be excluded from the bridge operational area by suitable siting of the fans and associated trunking.

5.6.5 Surfaces

i) **Glare-free**: All prepared surfaces are to be glare-free.

ii) **Non-slip**: The flooring throughout the bridge is to be provided with non-slip surfaces, effective in both wet and dry locations.

5.6.6 Drainage

Bridge decks outside, including the wings, are to be provided with means for drainage.

5.6.7 Toilet Facilities

Toilet facilities are to be provided on or adjacent to the bridge, on the same level.

5.6.8 Doors

Doors to the bridge wings are to be capable of being operated with one hand. Means are to be provided to hold the doors open.

5.6.9 Refreshment Facilities

Refreshment facilities and other amenities provided for the bridge personnel are to include means for preventing damage to bridge equipment and injury to personnel resulting from the use of such facilities and amenities.

5.6.10 Safety of Personnel

i) **Sharp Edges and Protuberances**: There are to be no sharp edges or protuberances which could cause injury to personnel.

ii) **Hand-rails or Grab-rails**: Sufficient hand-rails or grab-rails are to be fitted to enable personnel to move or stand safely in bad weather.

iii) **Seat Securing**: Where provisions for seating is made in the wheelhouse, means for securing same are to be provided, having regard to storm conditions.

5.7 Tests and Sea Trials

During sea trials, navigational equipment and systems are to be tested to the satisfaction of the attending Surveyor in accordance with a test program.
SECTION 3 Requirements for Notation NBLES (Navigational Bridge Layout and Equipment/Systems) and Notation NBLES+ (1 May 2019)

1 General (1 May 2019)

Vessels complying with Sections 1 through 3 of this Guide, will be assigned the notation NBLES (Navigational Bridge Layout and Equipment/systems) or notation NBLES+. Equipment required for NBLES is listed in 3/27 TABLE 1 (found at end of Section 3) and for NBLES+ is listed in 3/27 TABLE 2.

3 Documentation, Type Approval and Performance Standards of Navigational Equipment

3.1 Documentation

The manufacturer or assembler of the relevant navigational equipment required in this Guide is to provide documented evidence indicating that the equipment meets the criteria specified in 3/3.2 and 3/3.3.

3.2 Type-approved Equipment

Navigational equipment is to be type approved to the satisfaction of the Administration in conformity with appropriate performance standards acceptable to IMO.

3.3 IMO's Performance Standards

In general, relevant navigational equipment is to comply with IMO's Res. A.694(17), "General requirements for shipborne radio equipment forming part of the global maritime distress and safety system (GMDSS) and for electronic navigational aids", and those found in 3/13 and Section 4.

For ready reference, see also compilation of these performance standards in IMO Pub. 978-88.04.E (1988), "Performance Standards for Navigational Equipment". See also Appendix A1 for a list of IMO Resolutions referenced in this Guide.

5 Manual Mode of Operation

Navigational systems intended for automatic operation are to be fitted with manual operating facilities to enable the officer of the watch to take the appropriate action in the event of failure of the automatic system. For automatic systems for which this is not possible, an alternative system is to be provided as per 3/13.

7 Alarm Systems

7.1 Characteristics

Alarm systems are to be of the self-monitoring type and designed so that a fault in the alarm system is to cause it to fail to the alarmed condition. Additionally, they are not to react to normal transient conditions or spurious signals. Alarms are to be both audible and visual, and are to flash when first activated.

7.2 Audible Alarm Circuits

A fault in the visual alarm circuits is not to affect the operation of the audible alarm circuits.
7.3 Acknowledgment
Alarms are to be acknowledged by manually changing the flashing display of the incoming alarm to a steady display and by silencing the audible signal; the steady state light display is to remain activated until the fault condition is rectified. Alarming of other faults that may occur during the acknowledgment process is not to be suppressed by such action and is to be alarmed and displayed accordingly.

7.4 Disconnection and Resumption of Functions
Alarm circuits may be temporarily disabled for maintenance purposes or during initial start-up of machinery provided that such action is clearly indicated to the officer of the watch. However, such alarm is to be automatically re-activated after a preset time period has elapsed.

7.5 Built-in Testing
Alarm systems are to be provided with effective means for testing all audible and visual alarms and indicating lamps without disrupting the normal equipment or system operation.

9 Computerized Equipment
Where computerized equipment are interconnected through a computer network, failure of the network is not to prevent individual equipment from performing their individual functions.

11 Power Supply

11.1 Sources
Electrically operated systems and equipment covered in Sections 3 and 4 of this Guide are to be connected to distribution panels placed in an accessible position on, or adjacent to but at the same level of the bridge; each item of equipment is to be individually connected to its distribution panel. These panels are to be supplied by two exclusive circuits, one fed from the main source of electrical power and one fed from an emergency source of power. The power supplies to the distribution panels are to be arranged with automatic changeover facilities between the two sources.

11.2 Emergency Service
The vessel's emergency source of power is to be of sufficient capacity to supply the navigational related loads required in this Guide, in addition to other electrical loads as required in 4-8-2/5.5 of ABS Rules for Building and Classing Marine Vessels.

11.3 Loss of Power
Following a loss of power which has lasted for 45 seconds or less, navigational equipment/systems essential for the performance of primary bridge navigational functions (those are: gyro compass, radar, position-fixing system and electronic chart system) are to be automatically reinstated to their pre-power-loss configuration upon recovery from blackout, and all others are to be readily reinstated within five minutes, with minimum operator intervention, by virtue of the emergency source of power and, where necessary, by an uninterruptible power source.

Loss of power to the distribution panels is to activate an alarm.

13 Navigational Systems
In general, navigational equipment/systems installed onboard vessels are to be so arranged that failure of one piece of navigational equipment will not reduce the vessel’s ability to perform the functions specified in 3/13.1 through 3/13.9.
13.1 Heading Information System *(December 2003)*

The vessel is to be provided with continuous heading information at the appropriate workstations and at the main steering position. To this end, a magnetic compass and a gyro compass having the capability to determine the vessel's heading in relation to the geographic (true) North are to be provided. The magnetic compass and the gyro compass are to comply with IMO's Res. A.382(X), "Performance Standard for Magnetic Compass" and IMO's Res. A.424(XI), "Performance Standard for Gyro Compass", respectively. In addition, a pelorus or compass bearing repeater, or other means to take bearings over an arc of the horizon of 360 degrees, and a gyro compass heading repeater is to be provided. The following is to be complied with:

13.1.1 In order to ensure the availability of heading information the vessel is to be fitted with an independent gyro compass

13.1.2 Means for taking optical bearings is to be made available onboard the vessel.

13.1.3 Means are to be provided for correction of errors induced by speed and latitude.

13.1.4 When the position of the vessel cannot be received, the heading of the vessel is to be maintained and such condition is to be alarmed.

13.2 Steering System

Means for manual and automatic steering of the vessel are to be provided. The steering system is to comply with the following:

13.2.1 *(December 2003)* The automatic pilot with an on/off indicator is to comply with IMO’s Res. A.342(IX), as amended by Annex 3 to MSC.64(67) “Performance Standard for Automatic Pilots”.

13.2.2 *(December 2003)* The automatic pilot equipment is to be monitored by an off-heading alarm, which is to activate, when the actual heading deviates from a pre-set heading beyond a preset limit, in the wheelhouse. This alarm is to be derived from a system independent from the automatic steering system. The off-heading alarm is not to be released when setting a new course reference.

The off-heading alarm may receive input from the gyrocompass, provided the compass is independent of the automatic steering gear. The magnetic compass may be used as a signal input, provided that same is used as a back-up to the gyro compass.

A heading control system is to work together with a track control system, adjusting its heading for drift. The heading control system is to comply with IMO’s Res. MSC.64(67), Annex 3 “Recommendation on Performance Standards for Heading Control Systems” and the track control system is to comply with IMO’s Res. MSC.74(69), Annex 2 “Recommendation on Performance Standards for Track Control Systems”.

An overriding control device is to be provided at the navigation and traffic surveillance/ maneuvering workstation. The override control is to enable instant take-over from the autopilot as well as from the manual steering station.
For vessels of 50,000 GT and above, a rate of turn indicator is to be provided. The rate-of-turn indicator is to comply with IMO's Res. A.526(13), "Performance Standards for Rate-of-Turn Indicators".

For vessels of 50,000 GT and above, a track controller, or other means to automatically perform turns with a preset radius or rate of turn is to be provided.

13.3 Speed Measuring System *(December 2003)*

The vessel is to be fitted with the means for measuring speed and distance through the water. Vessels above 50,000 GT are also to be capable of measuring speed in the forward, aft and athwartship directions. The speed log is to comply with IMO's Res. MSC.96 (72), Annex 14 "Performance Standards for Devices to Indicate Speed and Distance".

13.4 Depth Measuring System *(December 2003)*

The vessel is to be fitted with an echo sounder or equivalent for measuring the water depth under the keel. An alarm is to be initiated when the water depth beneath the vessel is less than the predetermined value. The echo sounder is to comply with IMO's Res. MSC.74(69), Annex 4 "Performance Standards for Echo-Sounding Equipment".

13.5 Radar System

A 9 GHz radar or other means is to be provided in order to determine and display the range and bearing of search and rescue transponders and of other surface craft, obstructions, buoys, shorelines and navigational marks to assist in navigation and in collision avoidance. The radar installation is to comply with IMO's Res. A.477(XII) as amended by Annex 4 to MSC.64(67), "Performance Standards for Navigational Radar Equipment" and the following:

13.5.1 *(December 2003)* If the vessel’s minimum reflective cross section area is less than 100 m², a radar reflector or other means is to be provided so that the vessel can be detected by another vessel navigating by radar. The radar reflector is to comply with IMO’s Res. A 384(X) “Performance Standard for Radar Reflector”.

13.5.2 For vessels 3,000 GT and above, a second radar, independent of the 9 GHz radar, is to be provided. Additionally, a change-over switch between these radar together with the means to bypass the switch is to be provided.

13.6 Automatic Traffic Surveillance System *(December 2003)*

The vessel is to be fitted with an automatic traffic surveillance system to plot automatically the range and bearing of other vessel's ability to determine collision risk. This traffic surveillance system is to comply with IMO's Res. A823(19), "Performance Standards for Automatic Radar Plotting Aids (ARPA)". The ARPA function may be independent or built into the radar equipment. The following is also to be complied with:

13.6.1 The system is to be based on the assumption that all floating objects may come into a collision course with own vessel if the object’s course is changed by 45° with its speed maintained. An alarm is to be given to the navigator at a time which is to be adjustable in the range of 6 to 30 minutes, having regard to the danger, time to closest point of approach (TCPA). The system as a whole is to feature the following capability:

a) true motion and relative motion modes,
b) daylight-visible display,
c) guard zone system, featuring adjustable parameters, notably alarm set for CPA and TCPA,
d) simulator function showing the likely effects of a course or speed change in relation to tracked targets and
e) incorporated self-checking properties.

13.6.2

For vessels 3,000 GT and above, automatic acquisition and tracking of 20 radar targets and means to simulate a trial maneuver is to be provided. Additionally, a heading or track controller or other means to automatically control and keep to a heading and/or track is to be provided.

For vessels 10,000 GT and above, means to automatically control and keep the vessel in a straight track is to be provided.

13.7 Position Fixing System

The vessel is to be fitted with at least two types of automatic position fixing systems for the waters she is to navigate. These systems are to be capable of automatically and continually determining and displaying the vessel's position. One of the systems is to be GPS or equivalent, and the other a Decca, LORAN-C, GLONASS, or other means. The positioning equipment/system is to comply with IMO's Res. A819(19), “Performance Standards for Shipborne Global positioning System (GPS) Receiver Equipment” and the following:

13.7.1

Means for manually inputting required data in case of sensor failure, and the means to indicate the system’s mode of operation i.e., manual or automatic, are to be provided.

13.7.2

A means to self-test the major functions of the system is to be provided.

13.7.3

13.8 Watch Monitoring and Alarm Transfer System

Means to monitor the alertness of the officer of the watch and alarm other bridge personnel if disability occurs is to be provided. Additionally, conditions of danger to navigation caused by traffic or improper course-keeping in relation to planned route are to be monitored and such adverse conditions are to be alarmed at the bridge and at the locations specified herein.

13.8.1 Officer of the Watch Alertness-check System

a) General: A system is to be provided to monitor the alertness of the officer of the watch present on the bridge. This system is not to cause undue interference with the performance of bridge functions and it is to be designed and arranged that it cannot be operated in an unauthorized manner (i.e. bypassed). The system is to be connected to the alarm transfer system described in 3/13.8.2.

b) Periodic Verification (December 2003): The system used for periodic verification of the watch alertness system is to be adjustable up to 12 minute intervals, and it is to be arranged so that only the vessel’s master has access for enabling and disabling it (i.e., removing the fuses or keeping the acknowledgment button permanently depressed) and for setting the appropriate intervals for a periodic verification.
c) **Acknowledgment of Alertness-check Alarm**: The system is to provide for the acknowledgment by the officer of the watch at the navigation and traffic surveillance/maneuvering workstation and at the monitoring workstation.

d) **System Failure Alarm**: An alarm is to operate on the bridge and at the spaces described in 3/13.8.2.b, in the event of a failure of the alertness-check alarm system.

13.8.2 Alarm Transfer System (1 May 2018)

a) **General (December 2003)**: A fixed alarm transfer system is to be provided and connected to all vessel navigating officers’ cabins and public rooms.

b) **Transfer of Alarms (December 2003)**: Alarms per the “Remark” column of item B17, a through h, in 3/27 TABLE 1 are to be automatically transferred to the master’s cabin if not acknowledged at the bridge within 30 seconds. Additionally, a selector switch is to be provided in the event the master deems it necessary to also transfer the aforementioned alarms to the selected back-up navigator’s cabins and public rooms.

c) **Back-up Navigator Call-alarm**: Provisions are to be made at the bridge to activate the back-up navigator call-alarm. This alarm is to be audible in all the spaces described in 3/13.8.2.b. The fixed installation required under 3/13.8.2.a may serve this purpose.

d) **Portable Communication Device**: A wireless portable device allowing two-way communication with the officer of the watch is to be provided for use by the back-up navigator when attending locations not connected to the fixed installation.

13.9 **Route Planning**

The vessel is to carry official charts sufficient to enable route planning and monitoring for the intended voyage. However, where the charting function is partially or fully effected via electronic charts, a back-up means is to be provided. In addition, an alarm is to be given in case of deviation from the planned route, which is to be adjustable having regard to the time to danger of grounding.

13.10 **Vessel’s Automatic Identification System (December 2003)**

A vessel’s automatic identification system (AIS) is to be fitted onboard the vessel to provide automatically to appropriately fitted shore stations, other vessels and aircraft, needed navigational related information such as vessel’s identity, type, position, course, speed, navigational status, etc., and other safety related information, and to automatically receive such information from similarly fitted vessels and to monitor and track vessels and to exchange data with shore based facilities. The automatic identification system (AIS) is to comply with IMO’s Res. MSC.74(69), Annex 3 “Recommendation on Performance Standards for an Universal Shipborne Automatic Identification System”.

15 **Propulsion Engine/thruster Controls**

Means for controlling the propulsion engines/thrusters are to be provided at the wheelhouse and same is to be at least in compliance with Section 4-9-2 of the *Marine Vessel Rules*.

17 **Automatic Telephone System (December 2003)**

The vessel is to be fitted with an automatic telephone system, which is to comply with the following. In addition, a telephone system that can operate independently of the power supply from the vessel’s main or emergency system is to be installed.

17.1 The system is to enable two-way communication between all relevant workstations on the bridge and:

- Navigating officer's cabins and public rooms
- Radio room (when located outside the bridge area)
- Steering gear room
● If provided, emergency steering position
● Propulsion-machinery room

17.2

The automatic telephone network is to be designed to carry at least 2 simultaneous calls.

17.3

Telephones on the bridge and propulsion machinery control room are to have priority function over any other extension. A list of all relevant telephone extensions is to be permanently posted and clearly displayed adjacent to each telephone.

19 **Nautical Radiocommunication System**

The vessel is to be fitted with means for nautical radiocommunication with other vessels as well as means for communication with tugboats and mooring stations aboard and ashore.

21 **Workstations - Required Equipment**

As a minimum, in addition to alarms/indicators invoked in the various IMO Resolutions referenced in this Guide, the equipment listed in 3/27 TABLE 1 is to be fitted at the various workstations to enable the officer of the watch and other operators to carry out the required tasks.

23 **Operating/Technical Manual (1 May 2019)**

An operating/technical manual which is consistent with the information and criteria upon which the notations **NBLES** and **NBLES+** are based is to be placed onboard the vessel for the guidance of the operating personnel. The operating/technical manual is to give clear guidance to the vessel's personnel about the vessel's capability, limitation and procedures to follow when navigating the vessel with the required manning on the bridge. The operating/technical manual is to include the following, as a minimum.

23.1

Vessel’s name and ABS ID number.

23.2

Simplified diagrams of the systems described in 3/11 through 3/19.

23.3

Vessel’s navigating and maneuvering capabilities (i.e., particulars of propulsion machinery and steering system, vessel’s speed, vessel’s stopping ability, vessel’s turning ability, etc.).

23.4

Navigational procedures including transfer of alarms to the back-up navigator, and details of the routines, duties and responsibilities of each of the relevant personnel associated with the bridge operation of the vessel.

23.5

Periodical testing procedures for relevant navigational equipment/systems.

The operating/technical manual is to be submitted to ABS for review solely to ensure the presence of the above information which is to be consistent with the vessel’s design information and navigational capabilities. The operation of the vessel is not a condition of the assigned class notations.
Any modifications made to the approved bridge layout, field of views and navigational equipment/systems are to be approved by ABS. The operating/technical manual is to be updated accordingly, and submitted to ABS for review.

25 **Tests and Sea Trials**

During sea trials, navigational equipment and systems are to be tested to the satisfaction of the attending Surveyor in accordance with a test program. The test program is to include the following test details:

25.1 **Applicable to All Relevant Navigational Equipment**

25.1.1

Prior to testing, all relevant navigational equipment/systems are to be satisfactorily checked, calibrated and operated by the representative of the manufacturer or the equipment supplier who is to issue an affidavit to such effect for the review of the attending Surveyor.

Automatic resumption of primary bridge navigational equipment/systems functions are to be demonstrated following a blackout simulation of a period of 45 seconds. Similarly, resumption of all other relevant non-primary bridge navigational equipment/systems functions are to be satisfactorily effected following a blackout simulation period of five minutes. See 3/11.3.

25.2 **Specific Equipment or System**

Test details for the following equipment or systems:

a) Course information system.
b) Automatic steering system.
c) Speed measuring system.
d) Depth measuring system.
e) Radar system.
f) Automatic traffic surveillance system
g) Position-fixing system.
h) Watch monitoring and alarm transfer system.
i) Route planning system.
j) Vessel's automatic identification system.
k) Automatic Telephone System.
l) Sound reception in bridge, if fitted.
m) Radiocommunication system.

27 **Survey After Construction**

The following items are to be satisfactorily examined or verified at each Annual Survey of the vessel.

27.1

Ready availability of the approved operating/technical manual. See 3/23.

27.2

Required bridge’s fields of vision. See 2/5.1.
27.3

The systems described in 3/13 through 3/19. Additionally, subject to the discretion of the attending Surveyor, such systems may be tested in accordance with 3/25.

27.4

Following a loss of power supply, resumption of same to navigational equipment. See 3/11.3.
TABLE 1
Navigational Equipment for NBLES Notation (1 May 2019)

<table>
<thead>
<tr>
<th>Workstation for MAIN functions to be performed</th>
<th>Item</th>
<th>Equipment</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation and Traffic Surveillance/ maneuvering</td>
<td>A1</td>
<td>Gyro compass heading indicator</td>
<td>(December 2003) For NIBS notation, two independent gyro compasses are to be provided on the bridge (See 4/13.1). See note 2.</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>Magnetic compass heading indicator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>Course reminder (set course) indicator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A4</td>
<td>Rudder pump selector switch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A5</td>
<td>Steering mode selector switch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A6</td>
<td>Steering position indicator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A7</td>
<td>Rudder angle indicator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A8</td>
<td>Pitch indicator</td>
<td>For controllable-pitch propeller</td>
</tr>
<tr>
<td></td>
<td>A9</td>
<td>Rate-of-turn indicator and controller</td>
<td>For vessels 50,000 GT or greater. See 3/13.2.4 and 3/13.2.5</td>
</tr>
<tr>
<td></td>
<td>A10</td>
<td>Speed and distance indicator</td>
<td>For NIBS notation, the speed measuring system is to be independent of the position-fixing systems. See 4/13.2</td>
</tr>
<tr>
<td></td>
<td>A11</td>
<td>Depth water indicators with adjustment controls</td>
<td>See also 3/13.4</td>
</tr>
<tr>
<td></td>
<td>A12</td>
<td>9 GHz radar</td>
<td>For vessels 3,000 GT and above, an additional independent radar together with a change-over switch is to be provided. See 3/13.5.2</td>
</tr>
<tr>
<td></td>
<td>A13</td>
<td>Automatic traffic surveillance system including ARPA</td>
<td>See 3/13.6. For NIBS notation, see 4/13.3</td>
</tr>
<tr>
<td></td>
<td>A14</td>
<td>Position fixing equipment/system including automatic visual position indicator</td>
<td>Two types of receivers are to be provided. One of the systems is to be GPS or equivalent, and the other: Decca, Loran-C, GLONASS, or other means. See 3/13.7</td>
</tr>
<tr>
<td></td>
<td>A15</td>
<td>Officer of the watch check-alertness acknowledgment device</td>
<td></td>
</tr>
<tr>
<td>Workstation for</td>
<td>Main functions to be performed</td>
<td>Item</td>
<td>Equipment</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------------------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A16</td>
<td>Back-up navigator call alarm device</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A17</td>
<td>Facilities for use of navigation charts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A18</td>
<td>Vessel’s automatic identification system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A19</td>
<td>Propulsion engines/thrusters controls including emergency stops.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A20</td>
<td>Propulsion engine revolution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A21</td>
<td>Propeller revolutions indicator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A22</td>
<td>Wind direction and velocity indicator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A23</td>
<td>Air and water temperature indicator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A24</td>
<td>Automatic telephone system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A25</td>
<td>Radiocommunication equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A26</td>
<td>NAVTEX automatic receiver and recorder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A27</td>
<td>Signal transmitter for:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● whistle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● automatic device for fog signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● general alarm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Morse signaling light</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A28</td>
<td>Search light controls</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A29</td>
<td>Controls for windscreen wiper, washer, heater</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A30</td>
<td>Night vision equipment</td>
</tr>
</tbody>
</table>
Workstation for Main functions to be performed | Item | Equipment | Remarks |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A31</td>
<td>Sound reception system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A32</td>
<td>Workstation lighting control device</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A33</td>
<td>HVAC controls</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A34</td>
<td>Clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A35</td>
<td>Group alarms and reset controls</td>
</tr>
</tbody>
</table>
Workstation for Monitoring

[See Note 1]

- Observation of all vessels and objects
- Recognizing dangerous situations
- Handling own internal communication on board
- Handling communication vessel/vessel, and vessel/shore
- Perception of group alarms with aids for decision-making
- Releasing alarms
- Observation of weather and seaway
- Acknowledging watch check-alertness alarm
- Keeping deck log
- When workstation is occupied by an additional navigator, provides assistance to navigator at the navigation and traffic surveillance/mechanizing workstation
- When workstation is occupied by a pilot, advises to vessel's command.

<table>
<thead>
<tr>
<th>Item</th>
<th>Equipment</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Gyro compass heading indicator</td>
<td>(December 2003) For NIBS notation, two independent gyro compasses are to be provided on the bridge (See 4/13.1). See note 2.</td>
</tr>
<tr>
<td>B2</td>
<td>Rudder angle indicator</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>Pitch indicator</td>
<td>For controllable-pitch propeller</td>
</tr>
<tr>
<td>B4</td>
<td>Rate-of-turn indicator</td>
<td>For vessels 50,000 GT or greater. See 3/13.2.4 and 3/13.2.5</td>
</tr>
<tr>
<td>B5</td>
<td>Speed and distance indicator</td>
<td>For NIBS notation, the speed measuring system is to be independent of the position-fixing systems. See 3/13.2</td>
</tr>
<tr>
<td>B6</td>
<td>Depth water indicators</td>
<td>See also 3/13.4</td>
</tr>
<tr>
<td>B7</td>
<td>Radar</td>
<td>For vessels 3,000 GT and above, an additional independent radar together with a change-over switch is to be provided. See 3/13.5.2</td>
</tr>
<tr>
<td>B8</td>
<td>Officer of the watch check-alertness acknowledgment device</td>
<td></td>
</tr>
<tr>
<td>B9</td>
<td>Propulsion engines/thrusters emergency stops</td>
<td></td>
</tr>
<tr>
<td>B10</td>
<td>Propeller revolutions indicator</td>
<td></td>
</tr>
<tr>
<td>B11</td>
<td>Automatic telephone system</td>
<td>See 3/17</td>
</tr>
<tr>
<td>B12</td>
<td>Radiocommunication equipment</td>
<td>See 3/19</td>
</tr>
<tr>
<td>B13</td>
<td>Signal transmitter for whistle</td>
<td></td>
</tr>
<tr>
<td>B14</td>
<td>Controls for windscreen wiper, washer, heater</td>
<td></td>
</tr>
<tr>
<td>B15</td>
<td>Workstation lighting control device</td>
<td></td>
</tr>
<tr>
<td>B16</td>
<td>Clock</td>
<td></td>
</tr>
</tbody>
</table>
Workstation for Main functions to be performed

<table>
<thead>
<tr>
<th>Item</th>
<th>Equipment</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>B17</td>
<td>Required alarms and reset controls</td>
<td>In addition to the alarms/indicators which may be required by the various IMO Resolutions referenced in this Guide and pertinent flag Administration, the following conditions are to be alarmed at the monitoring workstation: a) Off-heading b) Off-track c) Planned route deviation d) Pre-warning of approach-waypoint, and closest point of approach e) Off-preset water depth f) Gyro compass failure g) Failure of alarms prescribed in 3/13.8.1 h) Failure of power supply to distribution panel serving relevant equipment (Alarming of the above conditions at the monitoring workstation is not a substitute for alarming at the required relevant workstations).</td>
</tr>
</tbody>
</table>
Workstation for Manual steering (Helmsman’s) [See Note 1]

<table>
<thead>
<tr>
<th>Item</th>
<th>Equipment</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Gyro compass heading indicator (repeater)</td>
<td>(December 2003) For NIBS notation, two independent gyro compasses are to be provided on the bridge (See 4/13.1). See note 2.</td>
</tr>
<tr>
<td>C2</td>
<td>Magnetic compass heading indicator</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>Course reminder (set course) indicator</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>Manual steering with override and selector control switches including steering wheel/steering lever</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>Rudder angle indicator</td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>Rate-of-turn indicator</td>
<td>For vessels 50,000 GT or greater</td>
</tr>
<tr>
<td>C7</td>
<td>Watch check-alertness acknowledgment device</td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>Automatic telephone system</td>
<td>See 3/17</td>
</tr>
<tr>
<td>C9</td>
<td>Controls for windscreen wiper, washer, heater</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. *As the navigation and traffic surveillance/maneuvering, monitoring and manual steering workstations are functionally interrelated and usually installed in close proximity from each other, considerations will be given to the omission of duplicate required equipment at each of the aforementioned workstations.*

2. *(December 2003) Master gyrocompass may be located in the electrical/instrumentation room and the gyrocompass repeaters on the bridge to meet this requirement.*
TABLE 2
Navigational Equipment for NBLES+ Notation (1 May 2019)

<table>
<thead>
<tr>
<th>Workstation for Docking (Bridge wings)</th>
<th>Main functions to be performed</th>
<th>Item</th>
<th>Equipment</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Giving instructions, performing and controlling change of course</td>
<td>D1</td>
<td>Gyro compass heading indicator</td>
<td>For NIBS notation, two independent gyro compasses are to be provided on the bridge (See 4/13.1). See note 1.</td>
</tr>
<tr>
<td></td>
<td>Giving instructions, performing and controlling change of speed</td>
<td>D2</td>
<td>Steering position selector switch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Giving instructions, performing and controlling change of thruster</td>
<td>D3</td>
<td>Rudder controls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Handling communication with maneuvering stations</td>
<td>D4</td>
<td>Rudder angle indicator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Handling communication with tugs, pilot boat</td>
<td>D5</td>
<td>Pitch indicator</td>
<td>For controllable-pitch propeller</td>
</tr>
<tr>
<td></td>
<td>Watching water surface along vessel's side</td>
<td>D6</td>
<td>Rate-of-turn indicator</td>
<td>For vessels 50,000 GT or greater</td>
</tr>
<tr>
<td></td>
<td>Releasing signals</td>
<td>D7</td>
<td>Propulsion engines/thrusters controls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acknowledging watch check-alarmness alarm</td>
<td>D8</td>
<td>Propulsion engine revolution</td>
<td>If reduction geared engine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D9</td>
<td>Propeller revolutions indicator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D10</td>
<td>Lateral thrust and lateral movement of vessel, indicator</td>
<td>If thrusters are fitted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D11</td>
<td>Longitudinal movement of vessel, indicator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D12</td>
<td>Wind direction and velocity indicator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D13</td>
<td>Depth water indicators</td>
<td>See also 3/13.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D14</td>
<td>Officer of the watch check-alarmness acknowledgment device</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D15</td>
<td>Whistle controls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D16</td>
<td>Search light and Morse lamp controls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D17</td>
<td>Automatic telephone system</td>
<td>See 3/17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D18</td>
<td>Radio communication equipment</td>
<td>See 3/19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D19</td>
<td>Workstation lighting control device</td>
<td></td>
</tr>
</tbody>
</table>
Notes:
1 (December 2003) Master gyrocompass may be located in the electrical/instrumentation room and the gyrocompass repeaters on the bridge to meet this requirement.
SECTION 4 Requirements for Notation NIBS (Navigational Integrated Bridge System)

1 General
The following requirements are applicable to vessel which is fitted with the navigational equipment/systems, as required in this Guide, so arranged to form an integrated bridge system (IBS). Vessels complying with Sections 1 through 4 of this Guide, will be assigned the notation NIBS (Navigational Integrated Bridge System). Equipment required for this notation is listed in 4/21 TABLE 1.

3 Integrated Bridge System (IBS)
An integrated bridge system (IBS) is to be provided and is to comply with IMO SN.1/Circ.288 – Guidelines for Bridge Equipment and Systems, Their Arrangement and Integration (BES). For the purpose of this Guide, the integrated bridge system pertains only to aspects dealing with navigational, monitoring/alarming and communication functions as covered in this Guide. The integrated navigation system is to be so arranged that failure of one sub-system does not affect any other sub-system. In case of failure of the integrated navigation system it is to be possible to operate the primary bridge navigational equipment/systems functions separately.

3.1 Dimmer Control (1 May 2018)
An individual dimmer control is acceptable in lieu of a single central dimming functionality called for by the Guidelines (IMO SN.1/Circ.288) provided the number of the individual dimmer control switches is minimized as far as practicable.

5 Centralized Bridge Workstation
A centralized bridge workstation is to be provided to enable the navigator to perform the necessary navigational, monitoring/alarming and communication functions as required in this Guide. The equipment required in the navigation and traffic surveillance/maneuvering workstation and monitoring workstation, specified in Section 3 of this Guide, is to be integrated within the centralized bridge workstation. See also 4/21 TABLE 1 for the required equipment to be included on this workstation.

7 Central Alarm Panel
The centralized bridge workstation is to be fitted with a central alarm panel for instruments and systems related to the functions specified in D3 for easy identification and acknowledgment of the individual alarms. Acknowledgment of an alarm at either the equipment fitted on the required workstation or the central alarm panel is to cancel the audible warning at both sources. Cancellation of the visual warning on the central alarm panel is to only be possible at the pertinent workstation.

In addition to required navigational alarms and those alarm conditions listed in the "Remark" column to item B17, a through h, of 3/27 TABLE 1, the following alarm conditions are to be alarmed at the central alarm panel:

- Position fixing inaccurate/lost.
- Loss of heading input.
- Loss of log input.
- Gyro compass mis-match.
9 **Route Planning Workstation**

The route planning workstation is to enable the navigator to plan the intended voyage without interfering with the actual navigation or maneuvering of the vessel. It is to be large enough to facilitate the use of two charts concurrently, and adequately fitted for efficient route planning. See 4/21 TABLE 1 for the required equipment to be included on this workstation.

11 **Conning Information Display**

A conning information display is to be provided on the bridge and which is to be observable from the conning position(s) and designed for easy reading of the maneuvering state of the vessel. The information on continuous display is to be restricted to information relevant to the actual phase of the voyage. This display may be included on the centralized bridge workstation. See also 2/5.2.2.

13 **Navigational System Requirements**

Requirements contained herein are in addition to or modified those in 3/13.

13.1 **Course Information System (December 2003)**

Notwithstanding 3/13.1, the heading information system is to include a magnetic compass and two independent gyro compasses.

13.2 **Speed Measuring System**

In addition to 3/13.3, the speed measuring system is to be independent of the position-fixing systems.

13.3 **Automatic Track-keeping System**

In addition to 3/13.6, the automatic track-keeping system is to automatically enable the vessel to keep along a pre-planned track and the vessel’s position is to be monitored continuously. When the vessel’s position cannot be received, the current heading or rate of turn is to be maintained until manually altered by the officer of the watch, and such condition is to be alarmed. The vessel’s position is to be cross-checked by dead-reckoning based upon speed over ground provided by the vessel’s log.

13.4 **Electronic Chart Display and Information System (ECDIS) (December 2003)**

Relevant equipment associated with the ECDIS (Electronic Chart Display and Information System) is to be installed on the centralized bridge workstation and at the route planning workstation. The ECDIS is to comply with IMO’s Res. A.817(XIX), as amended by Annex 5 to MSC.64(67) "Performance Standard for Electronic Chart Display and Information Systems (ECDIS)", and Annex 4 to MSC.86 (70) "Performance Standard for Electronic Chart Display and Information Systems (ECDIS)".

15 **Operating/Technical Manual**

In addition to 3/23, the operating/technical manual is to include the following:

15.1 *(December 2003)* Simplified diagrams of the electronic chart display and information systems (ECDIS) and integrated bridge system (IBS).

15.2 *(December 2003)* Periodical testing procedures for electronic chart display and information systems (ECDIS) and integrated bridge system (IBS).

17 **Workstations - Required Equipment**

In addition to 3/21, the equipment listed in 4/21 TABLE 1 is to be fitted on the bridge.
19 **Tests and Sea Trials (December 2003)**

The sea trial program is to include test details of the electronic chart display and information systems (EDCIS) and integrated bridge system (IBS).

21 **Survey After Construction**

In addition to 3/27, the systems described in 4/3 and 4/13 are to be included.

TABLE 1

Navigational Equipment for NIBS Notation (1 November 2016)

<table>
<thead>
<tr>
<th>Workstation/panel for</th>
<th>Main functions to be performed</th>
<th>Item</th>
<th>Equipment</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized Bridge</td>
<td>● See 3/27 TABLE 1</td>
<td>A1</td>
<td>Equipment required in Section 3 for the Navigation and Traffic Surveillance/ maneuvering and monitoring workstations</td>
<td>See 3/27 TABLE 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A2</td>
<td>Central alarm panel</td>
<td>See 4/7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A3</td>
<td>ECDIS</td>
<td>See 4/13.4</td>
</tr>
<tr>
<td>Conning Information</td>
<td>● To allow the navigator the easy reading of the maneuvering state of the vessel from the conning position</td>
<td>B1</td>
<td>Display panel</td>
<td>See 4/11. This panel may be included within the centralized bridge station.</td>
</tr>
<tr>
<td>Manual steering (Helmsman's)</td>
<td>● See 3/27 TABLE 1</td>
<td>C1</td>
<td>Equipment required in Section 3 for the manual steering workstation</td>
<td>See 3/27 TABLE 1</td>
</tr>
<tr>
<td>Docking (Bridge wings)</td>
<td>● See 3/27 TABLE 2</td>
<td>D1</td>
<td>Equipment required in Section 3 for the docking workstation</td>
<td>See 3/27 TABLE 2</td>
</tr>
<tr>
<td>Workstation/panel for</td>
<td>Main functions to be performed</td>
<td>Item</td>
<td>Equipment</td>
<td>Remarks</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------------</td>
<td>------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>Route Planning</td>
<td>• Determination of favorable course and optimum speed, taking into account weather conditions, current, etc. and route planning</td>
<td>E1</td>
<td>ECDIS including navigation planning station</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Giving instructions as to the course and speed</td>
<td>E2</td>
<td>Route planning devices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Calculation of tidal data</td>
<td>E3</td>
<td>Chart table</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Handling nautical records, documents, publications</td>
<td>E4</td>
<td>Position-fixing receiver</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Handling weather reports</td>
<td>E5</td>
<td>Retaining device for drawing triangles, dividers, magnifying lens, pencils, etc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Determination of documentation of position in case of conventional operation</td>
<td>E6</td>
<td>Weather chart plotter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Control of rate and error of chronometer, deviation, radio deviation, documentation of same</td>
<td>E7</td>
<td>Main clock</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Keeping deck log</td>
<td>E8</td>
<td>Chronometer with receiving facility for time signals</td>
<td>(December 2003) See Note 2</td>
</tr>
<tr>
<td></td>
<td>• External communication for planning operation using the chart</td>
<td>E9</td>
<td>Radio direction finder</td>
<td>(December 2003) See Note 3</td>
</tr>
<tr>
<td></td>
<td>• Control of rate and error of chronometer, deviation, radio deviation, documentation of same</td>
<td>E10</td>
<td>Log, including distance indicator, course plotter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Keeping deck log</td>
<td>E11</td>
<td>Officer of the watch check-alertness acknowledgment device</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• External communication for planning operation using the chart</td>
<td>E12</td>
<td>Barograph</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Control of rate and error of chronometer, deviation, radio deviation, documentation of same</td>
<td>E13</td>
<td>Command printer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Keeping deck log</td>
<td>E14</td>
<td>Automatic telephone system</td>
<td>See 3/19</td>
</tr>
</tbody>
</table>

Note:

1. Attention is drawn to items A1, B1, B5, and C1 of 3/27 TABLE 1 and D1 of 3/27 TABLE 2 under "Remarks" column.

2. (December 2003) Chronometer is not required, if official universal time is obtained by other means.

3. (December 2003) Radio Direction Finder is not required, if the vessel is provided with other radionavigation equipment suitable for use throughout its intended voyages.
APPENDIX 1 IMO Resolutions Referenced in this Guide (December 2003)

<table>
<thead>
<tr>
<th>IMO Res.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSC.74(69), Annex 4</td>
<td>Recommendation on Performance Standards for Echo-sounding Equipment</td>
</tr>
<tr>
<td>MSC.64(67), Annex 3</td>
<td>Recommendation on Performance Standards for Automatic Pilots</td>
</tr>
<tr>
<td>MSC.64(67), Annex 3</td>
<td>Recommendation on Performance Standards for Automatic Pilots [see also Res. MSC.64(17)]</td>
</tr>
<tr>
<td>IMO Res. A.342(IX)</td>
<td>Magnetic Compasses Carriage and Performance Standards</td>
</tr>
<tr>
<td>IMO Res. A.384(X)</td>
<td>Performance Standards for Radar Reflector</td>
</tr>
<tr>
<td>IMO Res. A.424(XI)</td>
<td>Performance Standards for Gyro-compasses</td>
</tr>
<tr>
<td>IMO Res. A.477(XII)</td>
<td>Performance Standards for radar Equipment [see also Res. MSC.64(67), Annex 4]</td>
</tr>
<tr>
<td>IMO Res. A.526(13)</td>
<td>Performance Standards for Rate-of-Turn Indicators</td>
</tr>
<tr>
<td>IMO Res. A.617(15)</td>
<td>Implementation of the Navtex System as a Component of the Worldwide Navigational Warning Service</td>
</tr>
<tr>
<td>IMO Res. A.694(17)</td>
<td>General Requirements for Shipborne Radio Equipment Forming Part of the Global Maritime Distress and Safety System (GMDSS) and for Electronic Navigational Aids [revokes Res. A574(14)]</td>
</tr>
<tr>
<td>IMO Res. A.816(19)</td>
<td>Recommendation on Performance Standards for Shipborne Decca Navigator Receivers</td>
</tr>
<tr>
<td>IMO Res. A.817(19)</td>
<td>Recommendation on Performance Standards for Electronic Chart Display and Information System (ECDIS) [see also Res. MSC.64(67), Annex 5]</td>
</tr>
<tr>
<td>IMO Res. A.818(19)</td>
<td>Performance Standards for Shipborne Loran-C and Chayka Receivers</td>
</tr>
<tr>
<td>IMO Res. A.823(19)</td>
<td>Recommendation on Performance Standards for Automatic Radar Plotting Aids (Arpas) [for installations before 1/1/97, see Res. A.422(IX)]</td>
</tr>
<tr>
<td>IMO Res. MSC.74(69), Annex 3</td>
<td>Performance Standards for Automatic Identification System</td>
</tr>
<tr>
<td>IMO Res. MSC.74(69), Annex 2</td>
<td>Recommendation on Performance Standards for Track Control Systems</td>
</tr>
<tr>
<td>IMO Res. MSC.64(67), Annex 3</td>
<td>Recommendation on Performance Standards for Heading Control Systems</td>
</tr>
<tr>
<td>IMO Res. MSC.96(72)</td>
<td>Performance Standards for Devices to indicate Speed and Distance [for installations before 1/1/97, see Res. A.478(XII)]</td>
</tr>
<tr>
<td>IMO Res. MSC.113(73)</td>
<td>Performance Standards for Shipborne GLONASS receiver Equipment</td>
</tr>
<tr>
<td>IMO Res. MSC.96(72), Annex 14</td>
<td>Performance Standards for Devices to Measure and Indicate Speed and Distance</td>
</tr>
</tbody>
</table>
MSC. Circular 53(66) Performance Standards for Shipborne GLONASS receiver Equipment
MSC. Circular 64(67) Adoption of New and Amended Performance Standards [revokes Res. A.574; amends Res. A342(IX), Res. A477(XII) and Res. A.817(19)]